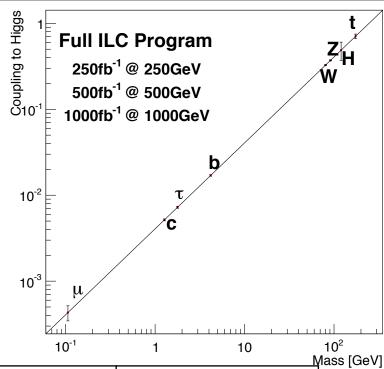
Top Yukawa Coupling at 1 TeV ILC hadronic "8 jet" channel

Tomohiko Tanabe

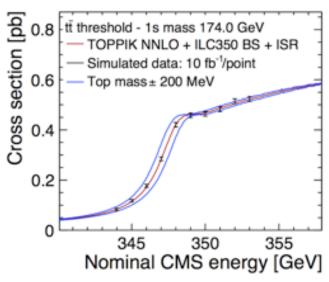

January 24, 2013

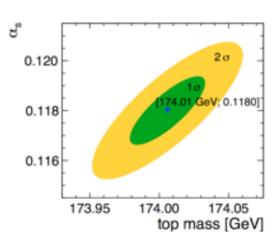
Introduction

- Top quark couples strongly to the Higgs boson (top Yukawa y_t~1)
- Important probe for verification of electroweak symmetry breaking
- Many BSM models predict large deviations in y_t e.g. composite Higgs models

Top Yukawa coupling precision studies at LC

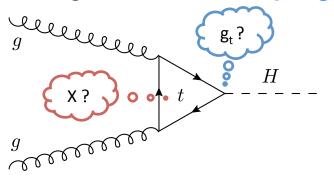
			<u> </u>
CM Energy	Simulation	Luminosity	$\Delta y_t/y_t$
500 GeV [Phys. Rev. D 84, 014033 (2011)]	Fast Sim	1 ab ⁻¹	10%
500 GeV [R. Yonamine, Ph.D. thesis]	Full Sim	1 ab ⁻¹	10%
700-800 GeV [A. Gay, Eur.Phys.J.C49, 489 (2007)]	Fast Sim	(various Higgs masses)	
1 TeV [ILC TDR, 2012]	Full Sim	0.5 ab ⁻¹ each for 2 polarizations	< 5%

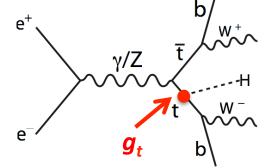

Indirect vs. direct



00000000

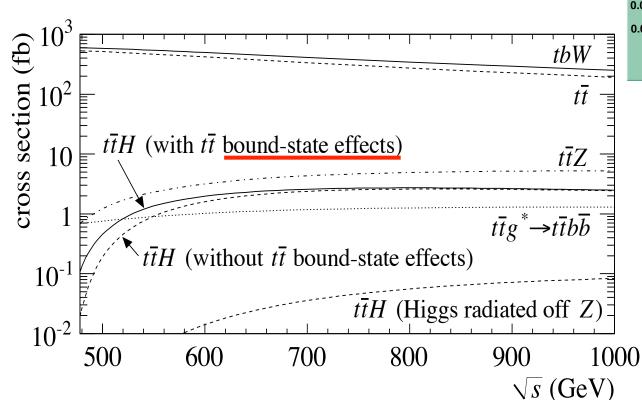
- Indirect measurement at the ttbar threshold
 - depends on theory calculation → improving
 - can be also inferred from LHC Higgs production

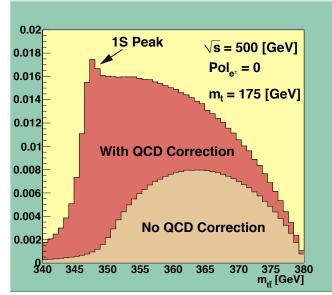

F.Simon Top Phys WS 2012

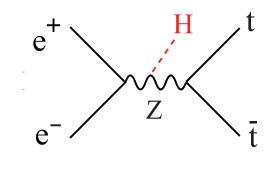


Direct measurement can distinguish between coupling anomaly and new

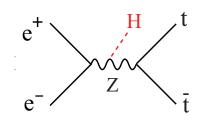
particle in the loop



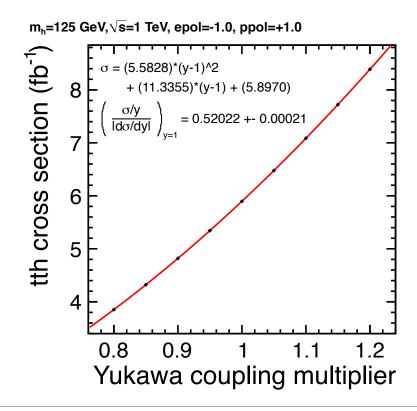


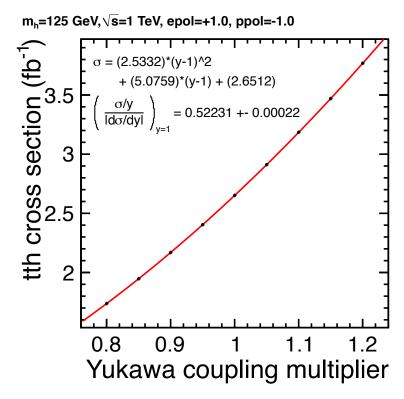

Signal and Background

- Signal: tth → bWbWbb
- Irreducible backgrounds:
 - ttZ → bWbWbb
 - ttg* → bWbWbb
- Reducible background: bWbW, e.g. tt



Sensitivity to top Yukawa

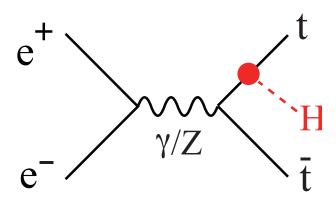




Estimate effect of non-contributing diagrams.

Dependence of cross section w.r.t. scaling of top Yukawa coupling → slope at SM value gives nominal sensitivity

$$\frac{\Delta y_t}{y_t} = (..) \frac{\Delta \sigma}{\sigma} \qquad \left(\frac{\sigma/y_t}{|d\sigma/dy_t|}\right)_{y_t = y_t(SM)} = \textbf{0.52}$$



Signal mode

- Goal is to evaluate the precision of the top Yukawa coupling at $\sqrt{s} = 1$ TeV
 - = evaluate the precision of cross section measurement
- Higgs boson mass set to 125 GeV in light of LHC data.
 - BR(H→bb) = 57.8%
- There are three decay modes depending on the W decay:
 - ttH → 4 jet + 2 lepton mode: BR(tt → blvblv) = 11% -- not analyzed
 - ttH → 6 jet + lepton mode: BR(tt → bqqblv) = 45% for l=e, μ , τ (29% for l=e, μ)
 - ttH → 8 jet mode: BR(tt → bqqbqq) = 44%

Data Samples

		_			
id	process	pol	xsec	ngen	weight
106427	Pttbb-all-all	eL.pR	3.429300	21000	0.047357
106428	Pttbb-all-all	eR.pL	1.517400	10600	0.041514
106429	Pttz-all-all	eL.pR	14.020600	13829	0.294018
106430	Pttz-all-all	eR.pL	4.367100	13200	0.095944
106451	Ptth-6q-hbb	eL.pR	1.552750	17620	0.025556
106452	Ptth-6q-hbb	eR.pL	0.698000	7361	0.027499
106453	Ptth-6q-hnonbb	eL.pR	1.133670	7749 3787	0.042427
106454 106455	Ptth-6q-hnonbb	eR.pL	0.509620 1.495560	17603	0.039026 0.024639
106456	Ptth-ln4q-hbb Ptth-ln4q-hbb	eL.pR eR.pL	0.672430	7311	0.024639
106457	Ptth-ln4q-hnonbb	eL.pR	1.091920	6684	0.047375
106458	Ptth-ln4q-hnonbb	eR.pL	0.490940	3358	0.042398
106459	Ptth-212nbb-hbb	eL.pR	0.360100	800	0.130536
106460	Ptth-212nbb-hbb	eR.pL	0.161940	400	0.130330
106461	Ptth-212nbb-hnonbb	eL.pR	0.262910	600	0.127073
106462	Ptth-212nbb-hnonbb	eR.pL	0.118230	400	0.085717
35786	P6f_yyveev	eL.pL	0.753694	10000	0.015828
35787	P6f_yyveev	eL.pR	14.262567	14263	0.289991
35788	P6f_yyveev	eR.pL	3.191048	10000	0.092540
35789	P6f_yyveev	eR.pR	0.759213	9999	0.015945
35790	P6f_yyvelv	eL.pL	1.434391	10000	0.030122
35791	P6f_yyvelv	eL.pR	22.876428	22873	0.290043
35792	P6f_yyvelv	eR.pL	6.272190	10000	0.181894
35794	P6f_yyveyx	eL.pL	4.121621	9999	0.086563
35795	P6f_yyveyx	eL.pR	67.534318	400000	0.048962
35796	P6f_yyveyx	eR.pL	18.645337	40000	0.135179
35799	P6f_yyvlev	eL.pR	22.875149	22871	0.290053
35800	P6f_yyvlev	eR.pL	6.264408	9998	0.181704
35801	P6f_yyvlev	eR.pR	1.427611	10000	0.029980
35803	P6f_yyvllv	eL.pR	41.275472	41270	0.290038
35804	P6f_yyvllv	eR.pL	12.598244	12597	0.290029
35807	P6f_yyvlyx	eL.pR	115.979040	698099	0.048179
35808	P6f_yyvlyx	eR.pL	37.306473	60000	0.180315
35811	P6f_yyxyev	eL.pR	68.502191	400000	0.049664
35812	P6f_yyxyev	eR.pL	18.659270	40000	0.135280
35813	P6f_yyxyev	eR.pR	4.163067	10000 699144	0.087424
35815 35816	P6f_yyxylv P6f_yyxylv	eL.pR eR.pL	116.426720 37.321082	60000	0.048293 0.180385
35819	P6f_yyuyyu	eL.pR	84.595962	500000	0.049066
35820	P6f_yyuyyu	eR.pL	27.500471	40000	0.199378
35823	P6f_yyuyyc	eL.pR	84.581774	498800	0.049175
35824	P6f_yyuyyc	eR.pL	27.508546	40000	0.199437
35827	P6f_yycyyu	eL.pR	84.426452	500000	0.133437
35828	P6f_yycyyu	eR.pL	27.483992	40000	0.199259
35831	P6f_yycyyc	eL.pR	84.975908	500000	0.049286
35832	P6f_yycyyc	eR.pL	27.584594	40000	0.199988
	-33 33	•			

Signal samples

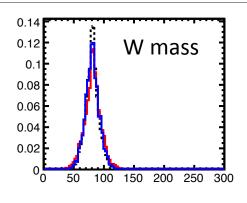
Weights are calculated assuming data samples of:

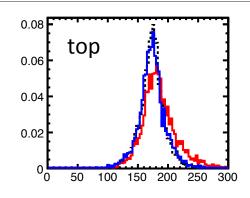
- $0.5 \text{ ab}^{-1} \text{ for } (-0.8, +0.2)$
- $0.5 \text{ ab}^{-1} \text{ for } (+0.8, -0.2)$ which are summed.

All weights << 1:

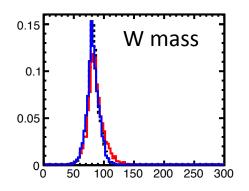
→ We have sufficient statistics.

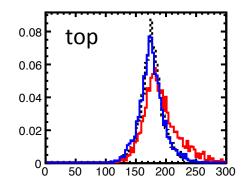
Analysis Flow




- Start with standard reconstruction samples for DBD
- Isolated lepton selection
- Event selection based on
 - b-tagging, jet combination mass, etc
- Comparison of two analyses:
 - Cut-based
 - TMVA-based with Boosted Decision Trees

Removal of γγ→hadrons

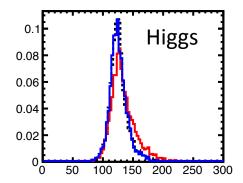




Average 4.1 events $\gamma\gamma$ hadrons are overlaid in all simulations.

→ Degrade the mass resolution due to extra energy in the forward region.

Black (dotted):

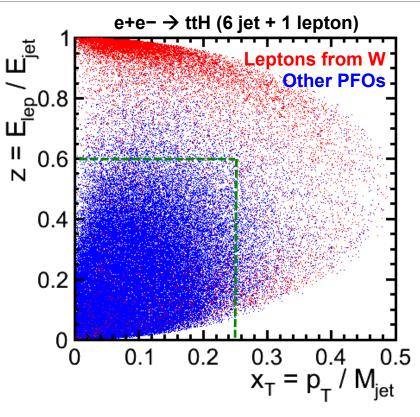

Durham (sample w/o γγ→hadrons)

Red:

Durham (sample w/ γγ→hadrons)

Blue:

Durham (sample w/ $\gamma\gamma\rightarrow$ hadrons) after removing $\cos\theta>0.94$ particles


→ Mass resolution can be recovered.
(PFOs are mostly central for ttH process.)

kt algorithm with R=1.2 is actually used for consistency with 6 jet + lepton analysis (studied by Tony Price)

Isolated Lepton Finding

Hard isolated leptons coming from W decay

 Useful for separating 6 jet + lepton / 8 jet / background

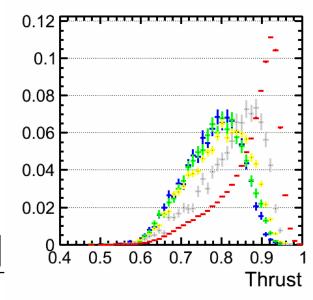
Selection criteria based on:

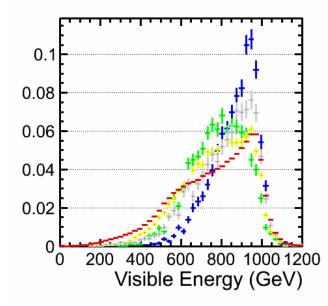
- Lepton ID with calorimeter energies which reduces fake leptons
- Impact parameter significance for reducing contamination from bottom and tau decays
- Jet-based isolation ("LAL Lepton Finder")
 - isolated lepton in jets tends to be "leading" or have "large p_⊤ w.r.t jet axis"

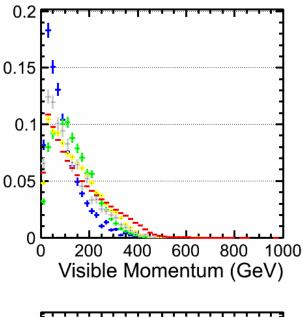
	Efficiency	Composition				
Efficiency	W → e,µ	W → τ→e,μ	Other e,µ	Fake e,µ		
Electrons	84.0%	94.2%	2.9%	1.6%	2.3%	
Muons	90.5%	96.3%	2.4%	1.2%	0.7%	

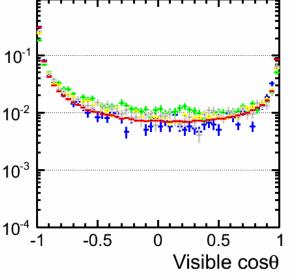
Performance of isolated lepton finder for tth 6 jets + 1 lepton sample

Variables (1)

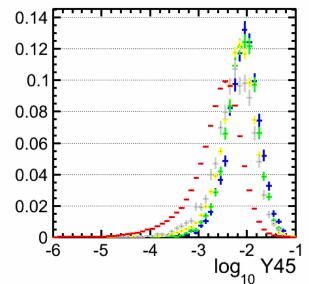


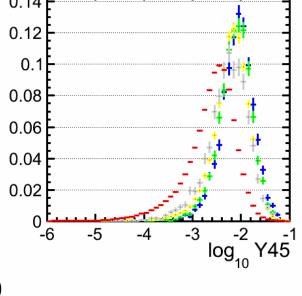

ttH 8 jet ttH other ttZ ttbb tt

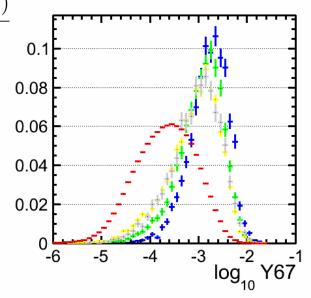

$$T = \max_{|\hat{n}|=1} \frac{\sum_{i} |\hat{n} \cdot \vec{p_i}|}{\sum_{i} |\vec{p_i}|}$$

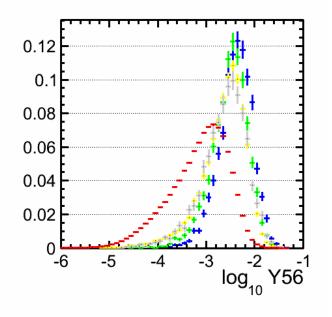

Thrust definition

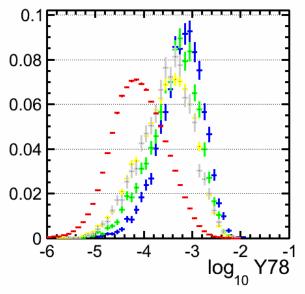
- dijet-like → 1
- Isotropic → 0

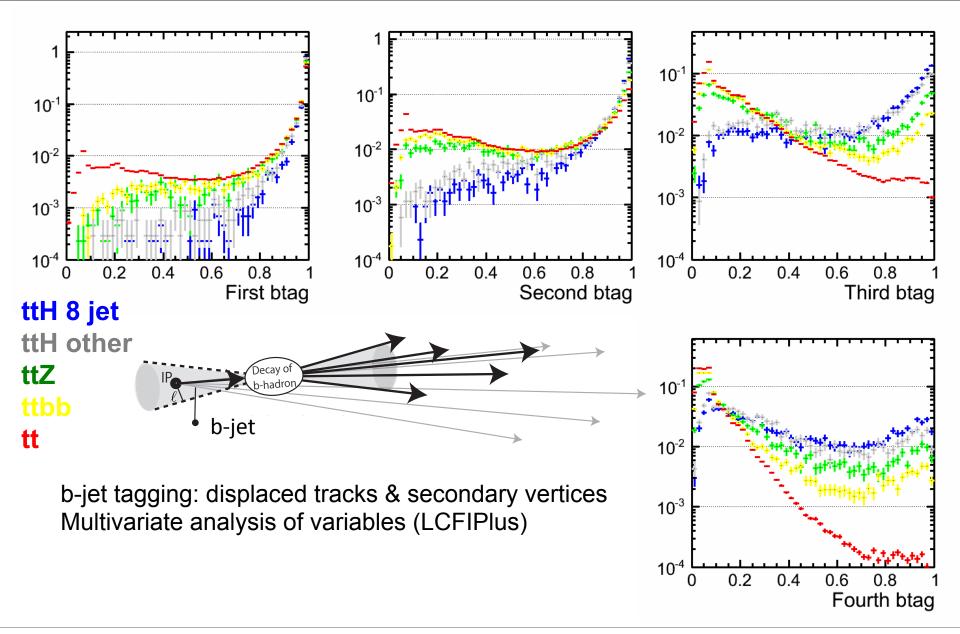

Variables (2)



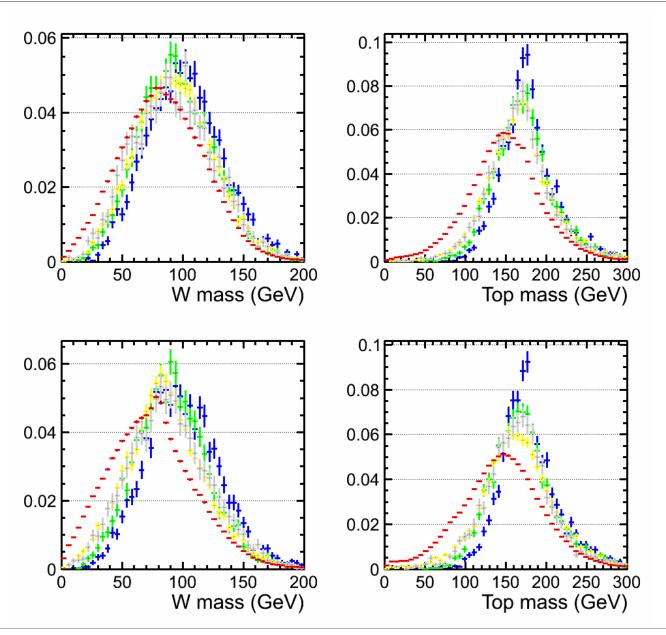

ttH 8 jet ttH other **ttZ** ttbb tt


Jet Finder "Y" variables


$$Y_{ij} = \frac{\max(E_i^2, E_j^2)(1 - \cos \theta_{ij})}{E_{CM}^2}$$

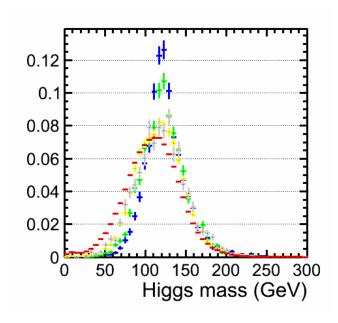


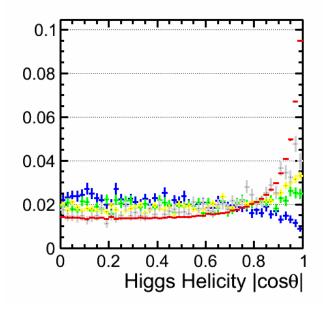
Variables (3)



Variables (4)

ttH 8 jet ttH other ttZ ttbb tt





Variables (5)

ttH 8 jet ttH other ttZ ttbb tt

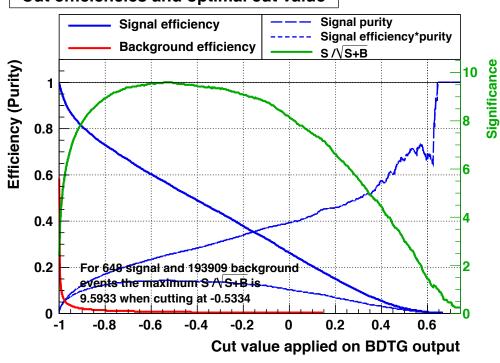
$$\chi^{2} = \frac{(M_{t_{1}} - M_{t})^{2}}{\sigma_{t_{1}}^{2}} + \frac{(M_{t_{2}} - M_{t})^{2}}{\sigma_{t_{2}}^{2}} + \frac{(M_{b\overline{b}} - M_{H})^{2}}{\sigma_{H}^{2}}$$

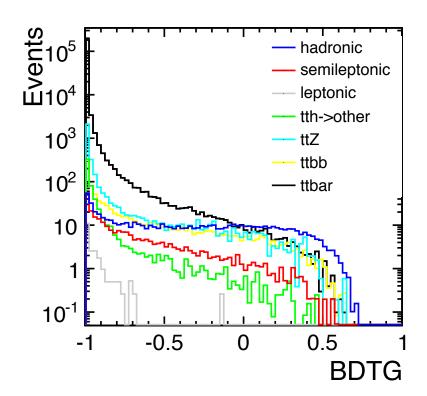
Jet combination is based on chi-squared minimization method. Jets with 4 lowest b-tags selected for W candidates.

Cut-based Analysis

	$t\overline{t}h$ (4J)	$t\overline{t}h$ (6J)	$t\overline{t}h$ (8J)	$t\overline{t}h\ (h \not\to b\overline{b})$	$t \overline{t} Z$	$t\overline{t}b\overline{b}$	$t\overline{t}$	Sig.
No cuts	151.39	628.73	652.77	1046.10	5332.52	1434.53	306238.26	1.16
$N_{\rm iso} = 0$	20.87	261.17	647.92	556.71	3226.14	932.49	188911.38	1.47
$E_{\rm vis} > 650 {\rm ~GeV}$	9.83	220.97	636.16	497.45	2743.54	849.34	157389.56	1.58
Thrust < 0.87	8.09	187.75	577.60	440.06	2219.68	540.88	46916.14	2.56
$Y_{78} > 0.0001$	3.65	143.55	549.52	415.51	1926.58	474.59	27472.09	3.12
$btag_4 > 0.38$	1.89	80.98	275.02	17.55	230.04	209.60	680.62	7.11
$ \cos \theta_{ m hel} < 0.9$	1.63	73.80	263.71	16.48	215.91	189.19	584.92	7.19
$m_t > 120 \text{ GeV}$	1.50	68.09	255.38	15.58	207.81	178.53	530.93	7.20

Cut-based analysis result (8 jet mode only): Statistical significance = 7.2 sigma

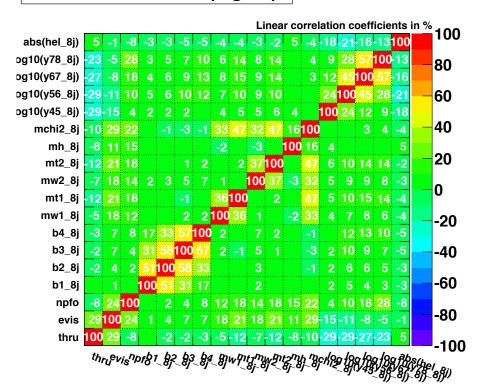


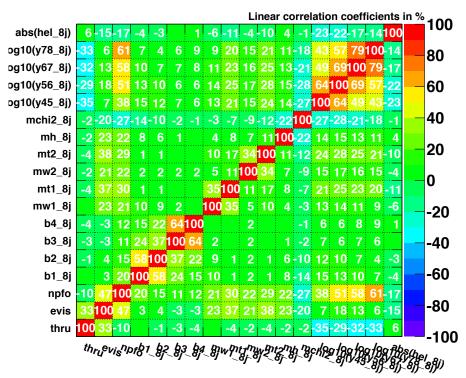

Multivariate Analysis

- Use TMVA Boosted Decision Trees with Gradient boost
- 18 variables (shown earlier) were used

Cut efficiencies and optimal cut value

TMVA analysis result (8 jet mode only): Statistical significance = 9.6 sigma


Error in normalization of the events was found and fixed.


Correlation Matrices

Correlation Matrix (signal)

Correlation Matrix (background)

Difference between cut-based and TMVA-based analysis will be studied. The input variables are correlated.

Systematic Uncertainties

So far our results give the statistical precision only. For **O(1)**% measurements, need to address **systematic uncertainties** such as:

- Background normalization
- Jet energy scale
- Luminosity spectrum
- B-tagging efficiency
- Lepton isolation criteria
- Lepton ID performance
- •
- → These are the next steps...

Conclusions

- Hadronic ("8 jet") analysis:
 - Cut-based analysis: 7.2 sigma
 - TMVA-based analysis: 9.6 sigma
- Semileptonic ("6 jet") analysis (Tony Price):
 - Cut-based analysis: 5.4 sigma
 - TMVA-based analysis: 7.6 sigma
- Combined: 12.2 sigma, 4.3% precision in Δy_t/y_t (TMVA)
 - for 0.5 ab⁻¹ (-0.8, +0.2) and 0.5 ab⁻¹ (+0.8, -0.2)
- To-do:
 - Include final results into DBD
 - Combine ILD + SiD works into publication
 - Consideration of systematic uncertainties