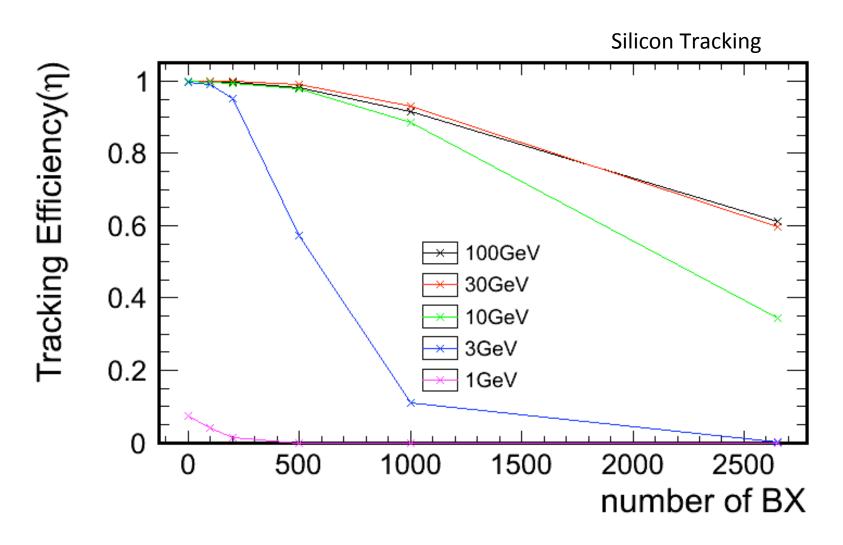
Performance Evaluation of FPCCD Vertex Detector

Tohoku Univ.

Tatsuya Mori

Introduction

 Some results of tracking efficiency in using FPCCD will be shown in this presentation.


Simulation Setup

- Event: Single muon+ (whose MCParticles make more than one hit in each layer of VXD and SIT)
- Momentum: 100, 30, 10, 3 and 1GeV
- Angle of elevation: 85°(fixed)
- Azimuthal angle: [-120°, -60°] (uniformly smeared)
- Background: eepair and backscatter(Ecm=1TeV)
- Bunch Crossing(from here, I'll write BX.):
 0, 1, 100, 200, 500, 1000, and 2650BX
 - Only background, which exist -135° to -45° in azimuthal angle and 70° to 100° in angle of elevation from the origin, is left because the data volume not cut is so large that cpu and memory bursts.
- Tracking: SiliconTracking_MarlinTrk processor (Only Silicon Tracking is used.)

Definition of Tracking Efficiency

- Tracking Efficiency: η = Numerator/Denominator
- Denominator: the number of muon+
- Numerator: the number which satisfies all the followings. In tracking muon+,
 - VXD Hits >= 5 are used.
 - SIT Hits(in the sense of space points) >= 2 are used.

Tracking Efficiency VS # of BX

Detail: Tracking Efficiency VS # of BX

SiTracks	# of BX	numerator	denominator	efficiency
100GeV	0	1664	1666	0.9988
	1	1666	1666	1.0000
	100	1664	1666	0.9988
	200	1662	1666	0.9976
	500		1666	
	1000			0.9154
	2650			
	2000	1017	1000	0.0104

SiTracks # of BX numerator denominator efficiency							
30GeV	0	1661	1661	1.0000			
	1	1661	1661	1.0000			
	100	1660	1661	0.9994			
	200	1660	1661	0.9994			
	500	1647	1661	0.9916			
	1000	1548	1661	0.9320			
	2650	989	1661	0.5954			

SiTracks# of BX numerator denominator efficiency							
10GeV	0	1676	1679	0.9982			
	1	1676	1679	0.9982			
	100	1675	1679	0.9976			
	200	1666	1679	0.9923			
	500	1642	1679	0.9780			
	1000	1489	1679	0.8868			
	2650	580	1679	0.3454			

SiTracks	# of BX	numerator	denominator	efficiency		# of BX	numer ator	denomin ator	efficie ncv
3GeV	0	1642	1648	0.9964	1GeV	0	121		0.0731
	1	1642	1648	0.9964		1	121	1655	0.0731
	100	1632	1648	0.9903		100	65	1655	0.0393
	200	1568	1648	0.9515		200	22	1655	0.0133
	500	946	1648	0.5740		500	0	1655	0.0000
	1000	182	1648	0.1104		1000	0	1655	0.0000
	2650	4	1648	0.0024		2650	0	1655	0.0000

Consideration & Plan

- In the beam run of Ecm = 1TeV, FPCCD cannot endure tremendous background in the sense of the definition of tracking efficiency.
- But if a track uses the innermost hit, impact parameter may be small enough to satisfy the requirement of VXD, although I've not yet to check it.
- Now the dependency on angle of elevation is being checked. (But low angle muon may be unable to be evaluated because the processes are too complicated for cpu and memory to finish them in a few days or weeks.)
- As soon as the above is completed, should I start to prepare the beam test of fpccd?