

Kicker Optics

- or -

Selected ATF-II EXT Line Performance Issues

Outline

- EXT optics
- vertical dispersion correction
- emittance measurement in EXT
- stability
- emittance growth (DR to EXT)
- bunch charge dependence
- coupling correction
- beta matching
- extraction kicker
- multipole components (simulation and beam-based measurements)
- QM7R replacement
- BS3X rotation
- extraction kicker (2)
- strength calibration
- rotation
- BS3X skew field
- Summary

Optics

- most inflector magnets at the same phase ... corrections within the inflector correct errors that originate in the inflector (singlephase corrections)
- two skew quadrupoles are included in the inflector for vertical dispersion correction
- "sum" mode (Σ-knob) generates vertical dispersion (no coupling)
- "difference" mode (Δ-knob) generates coupling (no vertical dispersion)
- coupling correction section is standard ILC orthonormal system (four skew quadrupoles)
- emittance diagnostic section is a compromise due to space limitations ... 2D reconstruction with beam tilts from 4 OTRs

Extraction + Inflector

EXT Coupling Correction / Emittance Diagnostic Section

Vertical Dispersion Correction

Simulation

Monday Day Shift, December 17, 2012
after QS Σ-knob only FD-phase correction
after QS Σ-knob + ZV correction

> QS*X $:-1.050 \mathrm{~A} \Rightarrow-0.113 \mathrm{~A}(\Delta I=+0.937 \mathrm{~A}) \ldots$ correct IP-phase η_{y} ZV3X $:+0.172 \mathrm{~A} \Rightarrow+0.047 \mathrm{~A}(\Delta I=-0.125 \mathrm{~A}) \ldots$ correct FD-phase η_{y} ZV11X $:+0.201 \mathrm{~A} \Rightarrow+0.229 \mathrm{~A}(\Delta I=+0.028 \mathrm{~A}) \ldots$ correct FF orbit

EXT Emittance Measurements

- do we believe the OTR measurements?
- how stable/reproducible are the measurements?
- observations (DR XSR and EXT multi-OTR)
- charge dependence

Wire Scanner / OTR Comparison

OTR2X beam tilt ... is the beam rotated?

Check measured response to ZH9X

OTROX before corrections

OTROX after dispersion correction

OTROX after coupling correction

Stability: 10 Consecutive EXT Emittance Measurements (November 29, 2012

Emittance: 2011-2012
(S. Kuroda)

EmityDREXT2011-12

Emittance: March 2013
(K. Kubo, T. Okugi)

N dep. of OTR emitt.

November 6, 2012 Owl Shift

XSR source-point β_{y} measurement

DR XSR $\sigma_{\mathrm{y}} \mathrm{vs}$ ICT

$\Delta \varepsilon_{\mathrm{y}} / \Delta \mathrm{ICT} \approx 0.6 \mathrm{pm} / 1 \mathrm{e} 9$

Coupling Correction

- given installed emittance diagnostic section, is measurement and correction of arbitrary phases of input coupling possible?
- recently (February 2013) Okugi-san had success correcting coupling at OTRs using QS1X/QS2X difference knob ... see his talk this afternoon
- assume matched DR beam with $\varepsilon_{y}=12 \mathrm{pm}$
E. Marin
- add coupling at many random phases ... projected $\varepsilon_{\mathrm{y}}=100 \mathrm{pm}$
- correct projected ε_{y} two ways
- use 4 skew quadrupoles (QKs) to correct measured beam tilt at each OTR using a modeled response matrix
- (effectively) scan 4 QKs to minimize projected ε_{y} (proposed ILC method)

Beta Matching

- 6 dedicated β-matching quadrupoles are provided at the start of the Final Focus, but they are downstream of the EXT OTRs
- used for changing β^{*}
- β-matching now being done with EXT quadrupoles, upstream of the OTRs ... beta match can easily be verified

Beta Matching (December 122012 owl)

Extraction Kicker

- multipole fields (quadrupole/sextupole): are they real?
- $2^{\text {nd }}$ kicker (KEX2) removed from beamline and replaced with a strong dipole corrector in January 2012

POISSON Field Simulation (C. Pappas, SLAC)

scale: 1.14" (figure) $\approx 0.75^{\prime \prime}$ (actual)

Orbit Bump Study (February 2010): bump vertically through KEX2
what we expected to see (no kicker multipoles) ...

... what we observed

Orbit Bump Study (February 2010): bump vertically through KEX2
what we expected to see (with predicted kicker multipoles) ...

... what we observed

set ZH3X/ZH4X/ZH5X X-bump; scan ZV5X/ZV6X/ZV7X Y-bump; find Xbump setting where Y -bump closes
at this point the quadrupole field seen by the beam in KEX2 has the value predicted by POISSON for the vacuum chamber center

QM7R Replacement

- original quadrupole (Tokin 3393) had 16 mm pole-tip radius
- extracting beam passed through at 22.5 mm ... in the coil pocket
- PRIAM simulations (P. Bambade) predicted large sextupole component at extracting trajectory
- QM7R replaced (January 2009) ... new quadrupole (Tokin 3581) has 21 mm pole-tip radius
- sextupole strength (K2L) reduced from $47 \mathrm{~m}^{-2}$ to $1 \mathrm{~m}^{-2}$

QM7R: pole-tip radius $=16 \mathrm{~mm} . .$. extracted beam offset $=22.5 \mathrm{~mm}$

Tokin 3393 ($\Phi=32 \mathrm{~mm}$)

QM7R replaced with larger bore ($\Phi=42 \mathrm{~mm}$) quadrupole in January 2009
$\mathrm{K} 1 \mathrm{~L}=0.3 \mathrm{~m}^{-1}=0.76 \times$ nominal
\rightarrow optics mismatch
$\mathrm{K} 2 \mathrm{~L}=46.6 \mathrm{~m}^{-2}$
$\rightarrow x-y$ coupling for vertically off-axis beam:
factor $\sim 2-3 \times \varepsilon_{y}$ for $\Delta y=1 \mathrm{~mm}\left(\varepsilon_{x}: \varepsilon_{y}=100: 1\right)$

Tokin 3393 ($\Phi=32 \mathrm{~mm}$)
\Rightarrow K1L $=0.392 \mathrm{~m}^{-1}=0.99 \times$ nominal
$\rightarrow \mathrm{K} 2 \mathrm{~L}=1 \mathrm{~m}^{-2}$

KOL

Tokin 3581 ($\Phi=42 \mathrm{~mm}$)

BS3X Rotation

- origin of strong vertical corrector ZV1X at beginning of EXT line and observed anomalous vertical dispersion in EXT/FF?
- measured vertical dispersion in DR at extraction point is normally small
- $3^{\text {rd }}$ septum magnet BS3X thougth to be kicking vertically
- BS3X was physically rolled ~ -4 mrad on March 17, 2010
- vertical orbit and measured ε_{y} improved

Observed that first 2 EXT vertical correctors (ZV1X and ZV2X) needed to be strong to properly launch into EXT (since before EXT rebuild for ATF2 ...)

- hypothesize that correctors are compensating for a kick error in extraction channel
- simulate error kick by rolling individual elements; use ZV1X and ZV2X to correct orbit
- find error that gives best fit to actual ZV1X/ZV2X values \rightarrow BS3X septum magnet roll
- BS3X was physically rolled ~ -4 mrad (March 17, 2010) to relieve ZV1X and ZV2X
- projected vertical emittance in EXT before coupling correction was improved ($\sim 20-40 \mathrm{pm}$ before $\rightarrow \sim 10-20 \mathrm{pm}$ after)

Extraction Kicker (2)

- kicker strength setpoint (voltage) has been creeping up
- beam-based calibration measurement
- vertical steering ... rotation

$\Delta \mathrm{V}_{\text {KEX }}$

measurement: 2012/12/07 Owl Shift

Horizontal orbit position at BS3X center estimated by back-propagation from EXT BPM measurements (QF1X-QF4X)
... courtesy of Yves Renier
$\Delta x=R_{12} \Delta \theta, \Delta \theta=c \Delta V, c=\frac{1}{R_{12}}\left(\frac{\Delta x}{\Delta V}\right)$
$\mathrm{R} 12=4.7329 \mathrm{~mm} / \mathrm{mrad}$ $\mathrm{dX} / \mathrm{dV}=-0.5085 \mathrm{~mm} / \mathrm{kV}$ $d \theta / d V=-0.1074 \mathrm{mrad} / \mathrm{kV}$ $\theta_{0}=-5 \mathrm{mrad} \Rightarrow \mathrm{V}_{0}=46.5 \mathrm{kV}$ (SLAC NDR KEX: $0.1158 \mathrm{mrad} / \mathrm{kV}$)

EXT Orbit (Corrected) vs KEX Voltage December 13, 2012 Day Shift (Okugi)

Kicker \& Septum Orbit Data

In order to make same EXT orbit, we must set to the following Septum and vertical steering settings

KEX	BS1X	BS3X	ZV1X	ZV2X
46000	1545.49 A	2576.02 A	-0.391 A	-0.062 A
48000	1534.29 A	2584.62 A	-0.181 A	-0.112 A
50000	1522.69 A	2593.62 A	+0.099 A	-0.197 A
44000	1555.29 A	2568.42 A	-0.601 A	+0.003 A
42000	1566.69 A	2559.42 A	-0.961 A	+0.108 A
40000	1577.49 A	2551.52 A	-1.241 A	+0.183 A

The vertical orbit data analysis

The slope of $Z V 1 \mathrm{X} / Z \mathrm{~V} 2 \mathrm{X}$ as a function of kicker amplitude are

- ZV1X; +0.1321 A/kV
- ZV2X ; - $0.0375 \mathrm{~A} / \mathrm{kV}$
- ratio $\mathrm{ZV} 1 \mathrm{X} / Z \mathrm{~V} 2 \mathrm{X} ;-3.524$

When KEX, BS1X, BS2X, BS3X are kicked by 1mrad, the currents for ZV1X, ZV2X are

	KEX1	BS1X	BS2X	BS3X
ZV1X [mrad]	-4.864	-4.342	-3.353	-2.145
ZV2X [mrad]	+1.386	+1.106	+0.779	+0.379
ZV1X/ZV2X	-3.509	-3.926	-4.304	-5.660

If we assumed the vertical kick was come from the kicker, the data was consistent.

[^0]KEX1 Roll $\approx-85 \operatorname{mrad}\left(-5^{\circ}!\right)$

BS3X Skew Field

- observed anomalous vertical dispersion in EXT/FF
- measured vertical dispersion in DR at extraction point is small
- well modeled with a skew quadrupole field at BS3X septum
- we have had problems with BS3X in the past
- BS3X had to be physically rolled ~ -4 mrad (March 17, 2010)
- measured dependence of inferred skew quadrupole strength versus horizontal position in BS3X is consistent with a skew sextupole field with: $K_{2} L=16 \mathrm{~m}^{-2}$
- our strongest FF sextupole (SD4FF) has $\mathrm{K}_{2} \mathrm{~L}=14.91 \mathrm{~m}^{-2}$

NOTE: $\eta_{\mathrm{x}}=179 \mathrm{~mm}$ @ BS3X

BS3X

$$
K L_{\text {BS3xskew }}=-0.02610 \mathrm{~m}^{-1}
$$

BS3Xskew = 0 @ KEX=46.7 kV

BS3Xskew = 0 @ BS3X X=+1.7 mm

Set EXT Kicker Voltage to 46 kV

Dec 12 (KEX @ 46 kV)

Study by Edu Marin (March 2013)

Conclusions

19/ 19

Motivation
Multipole
components
Measurements
Kicker Voltage
Study
Low Charge
Okugi's Study
Emittance
Correction
Conclusions

- In general, a rotation of the kicker explains almost all the orbit and dispersion measurements. The obtained values are $-9,-16$ and -20 mrad
- In addition, the BH3X and the septum are also good candidates to explain the considered observables
- The strength of the skew quadrupole obtained from the coupling correction by misaligning the kicker plus another magnet is as the one observed in the experimental runs.
- The QK correction pattern for $\Delta x, \Delta y$ for BHs BSs magnets is consistent with the measurements (assuming KEXTT=-9mrad)
- The QK correction is sensitive to $\mathrm{BH} s$ and BS s rotations (assuming KEXTT=-9mrad)

Recommendation:

According to the studies presented I would recommend to tilt the kicker in steps of +1 mrad and record the orbit, dispersion and emittance at each step in order to determine the kicker rotation that minimises the mentioned measurements

Summary

- EXT optics is well understood and capable of delivering matched and dispersion-corrected beams to the Final Focus
- there are some remaining anomalies in the DR extraction channel
- still looking for sources of emittance growth (and its current dependence)
- multi-OTR EXT emittance measurements are reliable and stable
- measured beam tilt (coupling) values are believable and correspond to real $X-Y$ coupling
- direct beam tilt correction using a modeled response matrix looks like a superior coupling correction technique
- extracted vertical emittance is strongly dependent on bunch charge
- 2-3 pm per 10^{9}... much larger than observed in DR
- weaker dependence observed recently? ... see Okugi-san's talk this afternoon
- extraction magnets (kicker, QM7R, septa) have been problematic, but improvements are being made
- observed KEX1 quadrupole/sextupole field components agree with POISSON field simulation
- tracking simulations indicate that vertical beam offset in KEX1 is not a source of significant emittance growth
- removing $2^{\text {nd }}$ kicker gave us more tuning flexibility, without significantly increasing beam jitter
- roll alignment of bending magnets has been problematic, but improvements are being made
- some mysteries remain
- is KEX1 rolled? by how much? can it be fixed?
- are there anomalous magnetic fields in BS3X, or are other errors fooling us?
- if there are anomalous magnetic fields in BS3X, can the magnet be fixed?
- can Okugi-san's QS Δ-knob coupling correction technique tell us more about any coupling sources?

[^0]: But, If we assumed the kicker amplitude was 5 mrad at 58 kV ,
 the vertical kick at kicker was 0.52 mrad (about 100 mrad rotation).

