

Low-Q IP-BPM

Siwon Jang (KNU Accelerator Lab.)

Prof. Eun-San Kim

April 3, 2013

INTRODUCTION

Contents

-The requirement for high resolution BPM

-Principle of cavity BPM

-Parameters for cavity BPM

Introduction

- The requirement for high resolution BPM

Realization of a precise beam handling is strongly required in future accelerators such as linear colliders (LC) and X-ray free electron lasers (XFEL). It goes without saying that a high resolution beam position measurement is the key.

Schematic layout of the ILC complex

Introduction / Cavity BPM

Principle Generates dipole (TM110) and monopole (TM010) modes

Dipole mode selectable coupler

Introduction / Cavity BPM

Design of Low-Q IP-BPM

Contents

-Design of Low-Q IP-BPM

-Characteristics of Low-Q IP-BPM

-Basic beam test results

-Electronics of Low-Q IP-BPM

Design of Low-Q IP-BPM

The rectangular design is determined since f0 for TM210 or TM120 is mainly determined by cavity size in X and Y direction, a and b. From simulation and measurements of test cavities, a = 60.99 mm and b = 48.59 mm were determined.

Parameters	Length[mm]
X direction (= a)	60.99
Y direction (= b)	48.59
Z direction (= L)	5.8
X-beam pipe	12
Y-beam pipe	6

Figure 1: Dimension of cavity

The cavity length L has to be shortened in order to reduce angle sensitivity. However, shorter L decreases R/Q, which reduces position sensitivity also. To recover position sensitivity, Rp is required to be small, in order to prevent leakage of the field from the cavity.

Design of Low-Q IP-BPM

Characteristics

- 1. Same basic idea with KEK IP-BPM.
- 2. Short decay time 20 ns for x and y signals.
- 3. Short decay time 30 ns for reference signal.
- 4. Single stage homodyne down convertor.
- 5. L.O. signal from reference cavity.

Design parameter					
Port	f (GHz)	b	Qo	Q _{ext}	
Х	5.712	8	5900	730	
Y	6.426	9	6020	670	
Reference	6.426	0.0117	1170	100250	
Deve	elopmen				

$$\frac{1}{Q_{\rm L}} (= \frac{1}{\omega \tau}) = \frac{1}{Q_0} + \frac{1}{Q_{ext}}$$

Multi bunch measurement due to Short decay time(~low Q value)

Basic beam test of low-Q IP-BPM

Electronics for Y-ports

Scheme of electronics of IP-BPM

- Conversion Gain : 10 dB
- Measured N.F

Used devices	Measured N.F.
N.F. analyzer	5 dB
S/G & S/A	19 dB

BVV of LPF : 50MHz

Estimated position resolution

N.F	Estimated Resolution			
0 dB	3 nm			
5 dB	4 nm			
19 dB	20 nm			

Measured Latency : I7ns

Electronics for Y-ports

Y-port Electronics

I-Q signal with 90° deference

I-Q tuning by phase shifter

- 20ns decay time for feedback System.

Design Frequency

LO: 6426 MHz

RF: 6426 MHz

Beam position resolution measurements of Low-Q IP-BPM

Contents

-Method for resolution study

-Experimental scheme for beam test

-I-Q tuning of Low-Q IP-BPM

-Beam test results

Beam position resolution measurements of Low-Q IP-BPM

Oscilloscope method for resolution study

- Calibration run
 - KNU electronics set-up: 40dB_Amp
 - KEK electronics set-up: with out Att
 - I-Q tuning for KEK BPM1,2 & KNU BPM
 - Search for each BPMs center (BPM1->BPM2->KNU)
 - Calibration run for each BPMs
- Resolution run
 - All the BPMs are set to have an offset.

Experimental scheme for beam test

Bema position resolution measurements of Low-Q IP-BPM

□ Low-Q IP-BPM Layout (1 KNU IP-BPM + 2 KEK IP-BPM)

Bema position resolution measurements of Low-Q IP-BPM

I-Q tuning of KEK BPM1,2 & KNU BPM

I-Q tuning was performed by using oscilloscope.

When I signal shows the maximum position, Q signal was set to minimum position by using phase shifter. I-signal Q-signal

Bema position resolution measurements of Low-Q IP-BPM

IP-BPM calibration beam test

KNU IP-BPM

0.674 V/um

BPM calibration by using mover

Results of Jan. beam(2011) resolution test

New Low-Q IP-BPM

Contents -Design of New Low-Q IP-BPM -RF test of New Low-Q IP-BPMs -New electronics of Low-Q IP-BPM

-Basic beam test results

Motivation of 11cm Low-Q IP-BPM design

11cm Low-Q IP-BPM

- Old Low-Q IP-BPM was fabricated by copper with 14cm x 14cm size. However, this cavity BPM has too heavy weight to install inside IP-chamber. Therefore, we need more small size and light weight cavity BPM to install inside IP-chamber!
- First, we changed material of IP-BPM from copper to Aluminum to make light weight.
- After then, the size of cavity BPM was reduced from 14cm x 14cm to 11cm x 11cm with out any performance disadvantage.

11cm Low-Q IP-BPM design

11cm Low-Q IP-BPM drawings of HFSS

11cm Low-Q IP-BPM sensor cavity design

Cavity dimensions for HFSS simulation

11cm Low-Q IP-BPM sensor cavity design

Electric field mapping of HFSS simulation

Mono-pole mode :3.9808 GHz X-dipole mode :5.7123 GHz Y-dipole mode : 6.4255 GHz

Results of HFSS simulation

11cm AL ver.

Port	f _o (GHz)	β	Q ₀	Q _{ext}	QL	τ (ns)
X-port	5.7127	5.684	4959.29	872.42	741.91	18.72
Y-port	6.4280	5.684	4670.43	821.61	698.70	17.23

Output signal for Y-port (11cm AL ver.)

RF measurement data

	Port	f _o (GHz)	β	Q _o	Q _{ext}	QL	τ (ns)	V_out (uV/2nm)
Designed	X-port	5.7127	5.684	4959.29	872.42	741.91	18.72	7.739
Designed	Y-port	6.4280	5.684	4670.43	821.61	698.70	17.23	7.448
Double_1	X-port	5.6968	0.656	362.34	552.14	218.77	6.112	9.740
Double_1	Y-port	6.4099	0.668	845.66	1266.7	507.11	12.59	6.010
Double_2	X-port	5.6975	0.817	483.38	591.45	265.99	7.430	9.410
Double_2	Y-port	6.4097	0.641	834.70	1302.5	508.70	12.63	5.927
Single_1	X-port	5.6991 T	he doubl	e block of l	P-BPM wa	s used for	7.55	9.444
Single_2	Y-port	6.4089	lovembe	r beam test	at the end	of Linac.	15.48	6.037

Tested Double block IP-BPM

□ Made by Aluminum (2kg for double block)

What is new electronics?

- Conversion Gain : 10 dB
- Measured N.F

Used devices	Measured N.F.
N.F. analyzer	5 dB
S/G & S/A	19 dB

BW of LPF : 50MHz

What is new !?

Total conversion gain: 10dB to 54dB LPF: 50Mhz to 40Mhz Phase shifter: Voltage type to Digital type

Estimated position resolution

N.F	Estimated Resolution				
0 dB	3 nm				
5 dB	4 nm				
19 dB	20 nm				

Measured Latency : 17ns

	New electronics
BW of LPF	40MHz
Gain	54~44dB
Thermal Noise	-96.1dBm
Estimated Resolution due to thermal noise	2nm
Cascaded NF	1.88dB
RF P1 _{in} dB	-22dB
Estimated Latency	25ns

Simplified schematic of new electronics

Simplified schematic of the IP-BPM signal processing electronics.

	New electronics
BW of LPF	40MHz
Gain	54~44dB
Thermal Noise	-96.1dBm
Estimated Resolution due to thermal noise	2nm
Cascaded NF	1.88dB
RF P1 _{in} dB	-22dB
Estimated Latency	25ns

- □ Conversion Gain : 54~44dB(X,Y)
- □ Variable OPAMP: 10dB
- □ BW of LPF : 40MHz
- □ Cascaded N.F : 1.88dBdB
- Remote phase shifter: $0 \sim 360$ degree
- Estimated position resolution : 2nm
- Estimated Latency : 25ns

Phase shifter remote control

- In November beam test, the phase shifter was controlled remotely at the ATF control room.
- The phase shifter was connected to RC LAN plus to control due to digital signal. The LO signal phase was controlled from 0 degree to more than 360 degree.

New Y-port electronics test (2012 Jan.)

- We tested two Y-port electronics at the same time by using one old Low-Q IP-BPM to check the performance of both electronics.
- Beam test scheme

Inside tunnel

Results of Electronics beam test

Calibration slope for calibrating the I signal to actual beam position is summarized in Table.

[uV/nm]	w/o	20dB	30dB	40dB
Y-port	450.9	72.1	21.8	7.7
Fx. Y-port	263.2	41.6	16.3	6.3

The results of calibration slope at the w/o att. case shows enough to measure 2nm resolution by using 14bit ADC. (14bit ADC noise = 366uV) 450.9uV/nm= 3.7count/nm 263.2uV/nm=2.16count/nm

New IP-BPM Test scheme @ end of Linac

Distance between each elements

- In this test, we used two BPMs (Double block).
- BPM sensitivity test performed during one shift
- The beam position at Low-Q IP-BPM was estimated by using two stripline BPMs.

Results of IP-BPM y-port sensitivity At 2012 November beam test (w/o electronics)

IP-BPM sensitivity

(For y-port)

= 2.2558[uV/nm]

(one-port measurements of BPM1)

= 2.22996[uV/nm]

(one-port measurements of BPM2)

Designed sensitivity = 3.005 [uV/nm] (BPM1) = 2.964 [uV/nm] (BPM2)

ICT monitor: 0.36~0.38 *10^10 (at LNE)

- □ IP-chamber will be installed at the IP-region with IP-BPMs.
- Reference cavity fabrication and sensitivity calibration.
- Electronics sensitivity check again with IP-chamber.
- **BPM** sensitivity check at the IP-region with piezo-mover.
- Final goal: 2nm beam position resolution measurement !

Summary

- The low-Q IP-BPM was developed and tested at the ATF2. The old low-Q IP-BPM was achieved 70nm beam position resolution.
- New 11cm AL. low-Q IP-BPM was developed fabricated to install in the IP-chamber. Also, new electronics was developed to achieve 2nm beam position resolution with wide dynamic range The basic beam test was performed at the end of Linear accelerator in ATF2.
- Beam position resolution measurements for new IP-BPMs will be perform during 2013.
- Finally, the IP-BPM will be used for feedback system study with 2nm beam position resolution.

Thank you for your attention!