

ATF2 Technical Review KEK, April 3rd 2013 *Glen White, SLAC*

ILC FFS OPTICS DESIGN AND BEAM DYNAMICS VERIFICATION BY ATF2

Overview

FFS design for LC
FFS design parameters
ILC, ATF2, FFTB, CLIC

What are we testing at ATF2 and why?

- Simulation-based study of tuning process for ILC and ATF2
 - How to demonstrate capability of reaching ILC luminosity / ATF2 waist beam properties.
 - Using ATF2 results to verify this process.

"Traditional" FFS Design

- Non-local correction of FD chromaticity in dedicated upstream sections
- Pairs of sextupoles with –I transforms
- Tested at FFTB
- Some problems
 - Compensation of aberrations non-ideal as –I transform destroyed for offenergy particles
 - Large aberration generated in beam tails
 - Separated correction sections makes FFS very long

FFS with Local Chromatic Correction

- Originally proposed by P. Raimondi & A. Seryi
- Correct chromaticity locally within final doublet using pairs of interleaved sextupoles
- Upstream bend magnet generates required horizontal dispersion
- Geometric aberrations cancelled with additional sextupoles placed upstream of bends in non-dispersive region.

Shorter FFS

 Local scheme yields much shorter design
 Cost savings
 NLC example shown here
 1800m -> 300m

Improved IP Energy Bandwidth

 Energy bandwidth of local scheme can be better than non-local scheme
 NLC example shown

Aberration and Halo Generation

- FF with non-local chr. corr. generate beam tails due to aberrations + does not preserve betatron phase of halo particles
- FF with local chr. corr. has much less aberrations and it does not mix phases particles

Scale Test of ILC FFS Optics

- Scaled design of ILC local-chromaticity correction style optics.
- Same chromaticity as ILC optics.
 - At lower beam energy, this corresponds to goal ~37nm IP vertical beam waist.

LC FFS Design Parameters

	ILC (TDR 500 GeV)	ATF2	FFTB	ATF2 (pushed)	CLIC (CDR 3 TeV)
L* (m)	3.5 / 4.5 ^	1	0.4	1	3.5
ε _y (pm.rad)	0.07	12 (25*)	34	12	0.003
$\xi_y \sim (L^*/\beta_y^*)$	7,300/9,400 ^	10,000	4,000	33,000	50,000
σ_{E}	0.07/0.12 %	0.1 %	0.3 %	0.1 %	0.3 %
$\Delta \sigma_y / \sigma_y \sim (\sigma_E . L^* / \beta_y^*)$	5/9,7/11	10	12	-33	150
σ _y (nm)	5.9	37 (50*)	60	20	1
σ_y (nm) Achieved		73 1/ 5*	77 :/ 7		
β_{x}^{*} (mm)	11	4 (40*)	10	4 - 40	4
β [*] _y (mm)	0.48	0.1	0.1	0.03	0.07
~ Tuning o	difficulty	compare	e with chrom ted ~450nm	atically n / 700nm	*Dec 2012 + [e+ / e-] ^ SiD / LC

 \square

Why Test?

- Complicated "balancing of higher-order terms" in FFS design leads to very tight tolerances
 - Try to model effects where realistic error conditions destroy properties of FFS
 - Overcome these weaknesses by designing "tuning knobs" and simulate their effectiveness
 - ATF2 can validate this procedure by comparisons of accelerator tuning with expected results from simulations
- Once tuned, dynamics effects cause drifts on multiple timescales of IP beam size and position
 - Model all expected sources of dynamic drift and design countermeasures
 - Test in detailed simulations
 - ATF2 experience and implementation of dynamic drift countermeasures will validate simulations
- By validating simulations of magnitude, effect and mitigation of 'static' and 'dynamic' imperfections we will gain confidence in our ability to design and run similarly designed optics for future high-energy machines

'Static' Error Sources

Installed positions

- Horizontal / vertical / roll
- Survey tolerances for ATF2 typically ~100um / 300urad

Alignment

- BPM -> magnet field centres
- Installations for ATF2 10's -> few-100 um

Magnetic fields

- Systematic and random integrated field strength deviations from model
- Quality of fields relative strengths of magnetic multipoles

Tolerances on Placement Errors

- Like ILC (and CLIC), tolerances for many magnets much tighter than can be realised
- Need to rely on active tuning

Tolerances on Magnetic Field Errors

 Typical expectations of magnetic field accuracy 1e-3 – 1e-4

 Several magnets have much greater field accuracy requirements

FFS Tuning

- Have no expectations of producing or placing magnetic elements with these extremely tight tolerance requirements
- Instead, design "tuning knobs" to remove the aberrations at the IP that exceeding these tolerance requirements generates
- This generates a new set of "dynamic" tolerances for the optics design based on the ability for the designed tuning knobs' ability to remove the expected aberrations
- Simulations including tuning knobs and all expected error sources must be run to asses the design of the FFS

Designing & Simulating FFS Tuning Procedure

- Specify full list of error sources
 - Use measurement data where available
- Generate multiple lattices with different error configurations from error list
 - MC simulations performed across, typically, 100 lattices
- Simulate initial steering/BBA/EXT coupling/EXT dispersion correction etc for each lattice seed
- Make a tuning knob to correct most common aberration from 100 seeds
- Apply this same knob to all 100 seeds
- Repeat last 2 steps until beam size converges
 - Simulations performed by multiple people using multiple simulation tools
 - e.g. Lucretia, MAD, MADX, MAPCLASS, SAD, PLACET
 - Critical to avoid systematic errors creeping into simulations and for cross-checking. Very easy to make mistakes.

Aberrations @ IP (ATF2)

- Aberrations generated by lattice imperfections that need to be dynamically tuned are (in order of importance determined by simulation):
 - <x'y> coupling
 - Vertical waist offset
 - Vertical dispersion
 - Y22
 - Y26

These 2nd order terms also found to be important during ATF2 tuning experience

- In simulation, tuning of all aberrations by combinations of X/Y sextupole moves
- 4 skew-sextupoles added in 2012 in ATF2
 - Motivated by suspected larger than expected multipole components in some magnets.
 - Useful additional tool for orthogonal 2nd-order knobs, gives greater dynamic range to 1st-order knobs by sextupole moves
 - Worth considering for ILC...

ATF2 Tuning Knobs

Orthogonal knobs as shown developed using simulation framework

- Also orthogonalise knobs to reduce horizontal dispersion and waist degradation
- Range of applicability of a given knob given by
 - Degree of contamination to other aberrations
 - Range of mover system
 - Degradation of orthogonality by lattice/alignment errors
- The range of aberration correction capability provides the true "dynamic" tolerances of a given lattice design

ATF2 Tuning Simulation

- Simulated tuning performance for a specific lattice design
- Lattice/tuning designs and simulations performed using different platforms by different groups for cross-checking
 - Lucretia, SAD, MADX (MAPCLASS), Placet

Tuning Performance Study with Different Optics

	BX1BY1	BX2.5BY1	BX10BY1
σ _y (50% CL) / nm (core size)	39.6	35.5	34.8
σ _y (90% CL) / nm (core size)	48.3	43.1	41.8
P(σ _y <37nm) / %	32	66	77
AGauss Spread (50%CL) / nm	6.8	4.0	2.7
AGauss Spread (90%CL) / nm	19.9	11.9	7.2
Convergence (lower better)	695	1183	992
Residual aberrations	T324 T326 T314	T324 <x'y> α_y</x'y>	T322 T324 T312

 Tuning performance for different IP beta_x configs

- Pre-QF1FF replacement
 - Motivated BX10BY1 optics due to tuning performance

Dec 2012 Results

SIMULATION

Estimated Tuning Effects

Not required 2013 (bad sext coil or mag. material in skew-sext ??)

linear knobs ~400nm

non-linear knobs -100m/n

wakefield + steering effects ~150nm

remaining 20nm to reach min beam size for measured emittance and IP beta

- Measured 73nm @ 25pm == 60nm @ 12pm (min 66nm == 53nm)
- Estimate effect of tuning knobs from corrections actually applied over ~3 week period
 - Corrections in this period not applied in an ideal way for this analysis
 - Re-asses after goal 1 achieved, then go back and tune in most efficient way possible

Simulated Long-Timescale Tuning at ATF2

 Tuning results with IPBSM rotation (including <xy> knob)

Glen White, SLAC

per seed over LHS time period.

Results dependent on IPBSM

performance

Initial Conditions, ILC BDS Simulation

 Initial conditions and preliminary tuning for ILC and ATF2 cases somewhat different.

ILC

- Assume significant tune-up in linac
- More sophisticated BBA in BDS assumed based on DFS.

• ATF2

- Added complications dealing with DR extraction system (more like ILC RTML)
- Prefer steering to BPM centers due to wakefield issues.

- Initial beam sizes before final tuning in ILC simulation
- $\Delta \sigma_v / \sigma_v \sim 20$ for average case
- Compare with 15 observed at ATF2

ILC BDS Tuning Simulation

Tuning simulation similar to ATF2

- No specific 2nd-order knobs tried here though, could lead to improvements.
- Includes dynamic effects (of slow-drift type corrections, not fast-feedback)

Demonstrating ILC Luminosity Performance with Simulations

- ILC RDR parameters
- Tuning procedure for BDS followed including consideration of dyamic effects due to ground motion + component jitter.
 - Include pulse-pulse feedback (cascaded linac + BDS)
 - Include 6nm BDS emittance overhead
- Need to add luminosity loss due inter-pulse dynamics including mitigation by intra-pulse feedback (2 loops in BDS at IP angle and position phases)
 - Worst-case (K-model GM, and TESLAera linac HOM's) + 8% lumi loss.
- Expect ~90% seeds to provide nominal luminosity

ILC Long-Term Luminosity Performance

- Expect ~10% degradation in luminosity per week due to alignment drift
- Possible to test stability on this timescale @ ATF2 if DR extraction parameters can be kept stable

- Luminosity loss through fast motion of final doublets causing offset in beam collisions
 - Mitigated by MHzscale intra-train feedback close to IP
- Emittance dilution due to orbit growth on longer timescales
 - Mitigated by distributed orbit feedback systems
- (Old simulation performed for TESLA)
 - (Walker/Wolski)

Dynamic Effects at ATF2

- Ground motion spectra taken at ATF2 site
- Relative vibration between final focus elements measured
- Expected effects modelled
- Maintain IP and orbit collisions through distributed feedbacks
 - High-precision cavity BPMs throughout lattice (~20-100 nm resolution demonstrated)
 - Ultra-high cavity BPM doublet near IP (5nm resolution demonstrated, goal 1-2 nm)

Long-Term Beam Size Stability at ATF2

- Feedback & Orbit control not enough for long term beam size stability
- Need to periodically tune using all available aberration correction knobs
- Concept of "tuning knob dither feedback"
- Understand timescale of running FFS system before full re-tuning necessary

Orbit Control in FFS @ ATF2

- FFS optics requirements lead to unusual situation for beam diagnostics
- All phase changes occur inside magnetic elements, only sample FD-phase
- I location for IP-phase sampling at IP vertical image point (waist) with small beam size
 - Critical for FFS feedback
 - Need high-performance BPM (on mover to help with limited dynamic range)

April 3, 2013

<100nm jitter measured

Summary

- ILC FFS sets unprecedented tolerances on optics
 - Overcome by designing static and dynamic tuning counter-measures
- MC simulations constructed to test ability of tuning process to deliver expected luminosity.
- By following simulation procedure for ATF2 and achieving aberration-removed design spot sizes we can verify the FFS design process and gain confidence in ability for ILC to deliver luminosity goals.
 - By investigating different IP beta optics, understand how FFS tuning difficulty varies with magnitude of FFS chromaticity.
- The tuning procedure is critically reliant upon the device by which you tune on
 - For ILC, the luminosity and pair monitors (also critically dependent upon understanding beam-beam physics).
 - For ATF2, the IPBSM
 - No expense should be spared on these systems!

Acknowledgements

- Thanks to various people I stole slides from (spread throughout history!)
- Many contributions to ATF2 simulations throughout LC & ATF2 collaboration, too many to represent here...