GM feedback and GM effect detection

<u>Y. Renier</u> ,J. Pfingstner, K. Artoos,D. Schulte, R. Tomas (CERN) A. Jeremie (LAPP)

FJPPL-FKPPL Workshop on ATF2 Accelerator R&D 11th of February 2013

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

GM feedback and GM effect detection

Y. Renier

Introduction Cases studied Simulation Results Conclusion and

Headlines

Introduction

Cases studied

Simulation Results

Conclusion and Plan

GM feedback and GM effect detection

Y. Renier

Introduction Cases studied Simulation Results Conclusion and Plan

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● のへで

Headlines

Introduction

Cases studied

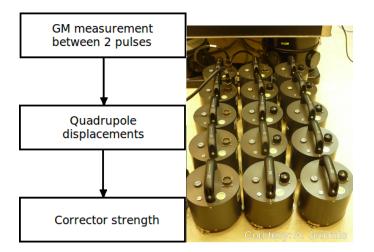
Simulation Results

Conclusion and Plan

GM feedback and GM effect detection

Y. Renier

Introduction


Cases studied

Simulation Results

Conclusion and Plan

・ロト・日本・モート ヨー うへの

Concept of Feed Forward with GM Sensors

GM feedback and GM effect detection

Y. Renier

Introduction

Cases studied Simulation Results Conclusion and Plan

・ロト・日本・モート ヨー うへの

Goal and motivation of the ATF2 experiment

Goal

 Detect Ground Motion (GM) effect on beam trajectory.

Motivation

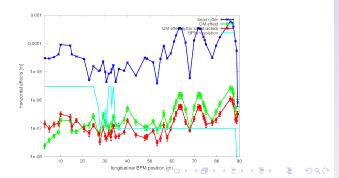
- GM sensors are usually only compared to other GM sensors
- It would demonstrate possibility to make a feed forward with GM sensors.
- Feed forward would allow trajectory correction based on GM measurements in CLIC.
- Feed forward would allow big saving (avoid quadrupole stabilization in CLIC)

GM feedback and GM effect detection

Y. Renier

Introduction

Cases studied


Simulation Results

Conclusion and Plan

Algorithm

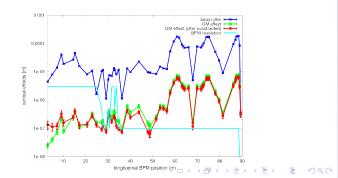
Algorithm - Each Pulse

- Remove incoming jitter from BPM measurements (first 5 SVD modes).
- Evaluate GM effect on BPM readings from GM sensor measurements (minus the part removed by jitter subtraction).
- Compare these two residuals.

GM feedback and GM effect detection

Y. Renier

Introduction


Cases studied

Conclusion and

Algorithm

Algorithm - Each Pulse

- Remove incoming jitter from BPM measurements (first 5 SVD modes).
- Evaluate GM effect on BPM readings from GM sensor measurements (minus the part removed by jitter subtraction).
- Compare these two residuals.

GM feedback and GM effect detection

Y. Renier

Introduction

Cases studied

enelysien and

Simulation Parameters

Conditions

- Updated ATF2 nominal lattice (sextupoles off).
- Elements misaligned initially (RMS=100µm).
- Trajectory is then steered.
- GM model based on measurements.
- Relative GM from 1st sensor.
- Incoming beam jitter.
- Quadrupoles errors of $\frac{dK}{K} = 10^{-4}$ included.
- BPM resolution included.
- Sensors transfer function included.

Framework available at

http://svnweb.cern.ch/world/wsvn/clicsim/trunk/ in the folder ATF2/Frameworks/feedforward

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

GM feedback and GM effect detection

Y. Renier

Introduction

Cases studied

Simulation Results

Conclusion and Plan

Headlines

Introduction

Cases studied

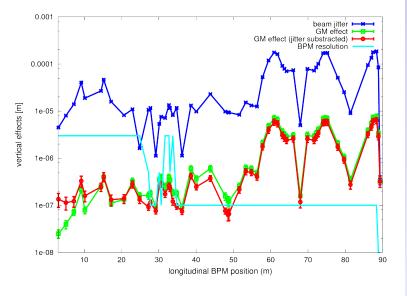
Simulation Results

Conclusion and Plan

GM feedback and GM effect detection

Y. Renier

ntroduction


Cases studied

Simulation Results

Conclusion and Plan

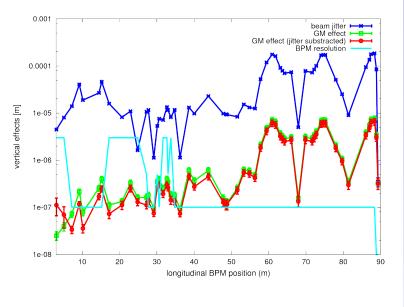
・ロト・日本・日本・日本・日本・日本

Nominal Lattice

GM feedback and GM effect detection

Y. Renier

ntroduction


Cases studied

Simulation Results

Conclusion and Plan

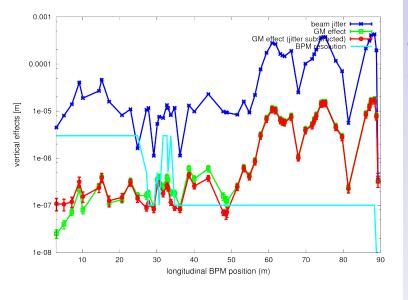
・ロト・西ト・ヨト ・ヨー シタの

Nominal Lattice with 5 Improved BPMs

GM feedback and GM effect detection

Y. Renier

ntroduction


Cases studied

Simulation Results

Conclusion and Plan

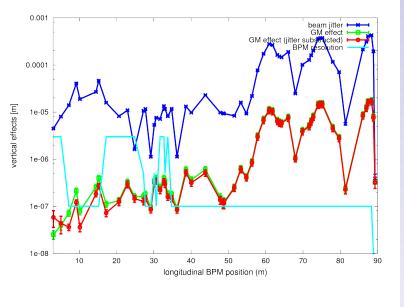
・ロト・日本・日本・日本・日本・日本

Ultra Low β Lattice

GM feedback and GM effect detection

Y. Renier

ntroduction


Cases studied

Simulation Results

Conclusion and Plan

・ロト・西ト・ヨト ・ヨー シタの

Ultra Low β Lattice with 5 Improved BPMs

GM feedback and GM effect detection

Y. Renier

ntroduction

Cases studied

Simulation Results

Conclusion and Plan

・ロト・日本・モート ヨー うへで

Headlines

Introduction

Cases studied

Simulation Results

Conclusion and Plan

GM feedback and GM effect detection

Y. Renier

ntroduction

Cases studied

Simulation Results

Conclusion and Plan

・ロト・日本・日本・日本・日本・日本

Evaluation of the results

- R₁ is the GM effect obtained from GM sensors.
- R_2 is the GM effect obtained from BPMs.

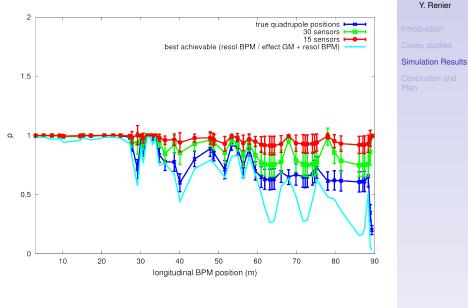
$$p = rac{||R_1 - R_2||_2}{||R_1 + R_2||_2}$$

- p = 1 if R_1 and R_2 independent.
- p = 0 if $R_1 = R_2$ (ideal case).
- The lower p is, the best is the determination from the GM sensors.

Remark

On the following plots, the line is the mean value over 100 seeds, error bars are the standard deviation. GM feedback and GM effect detection

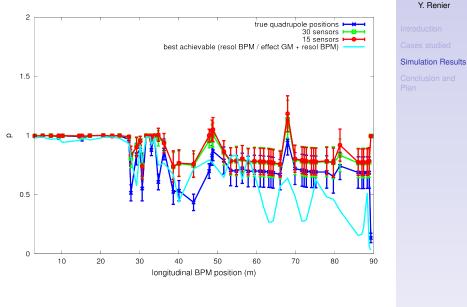
Y. Renier


ntroduction

Cases studied

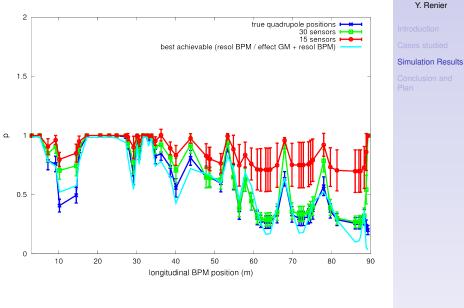
Simulation Results

Conclusion and Plan


Nominal Lattice (X)

▲□▶▲□▶▲□▶▲□▶ □ のへで

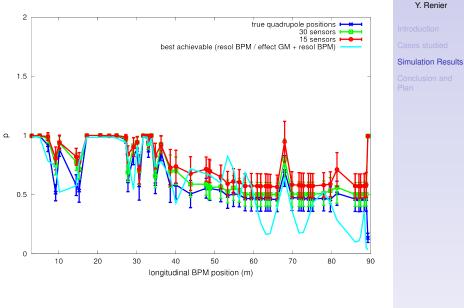
GM feedback and GM effect detection


Nominal Lattice (Y)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

GM feedback and GM effect detection

Nominal Lattice with 5 Improved BPMs(X)

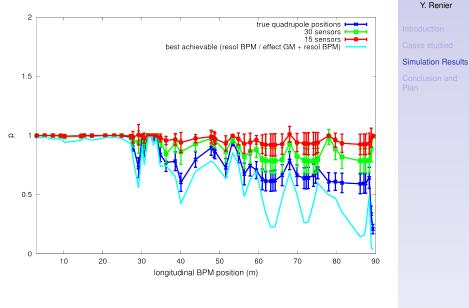


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

GM feedback and

GM effect detection

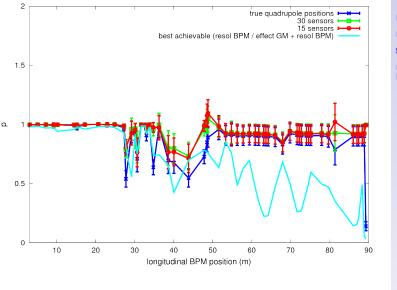
Nominal Lattice with 5 Improved BPMs(Y)



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

GM feedback and

GM effect detection


Ultra Low β Lattice(X)

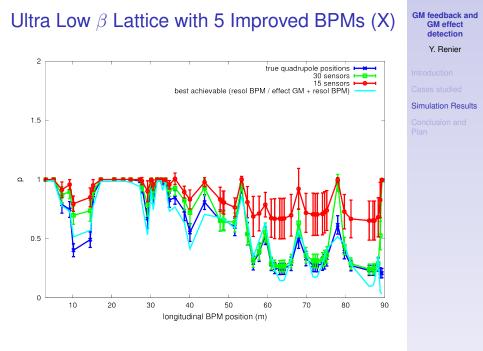
▲□▶▲□▶▲□▶▲□▶ □ のへで

GM feedback and GM effect detection

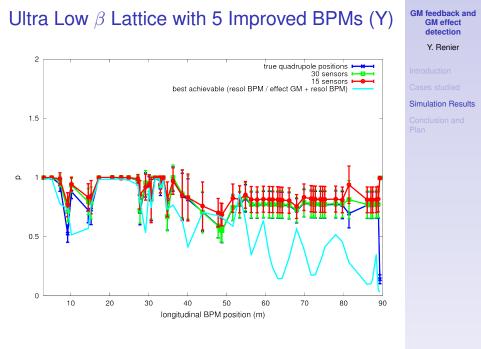
Ultra Low β Lattice(Y)

GM feedback and GM effect detection

Y. Renier


ntroduction

Cases studied


Simulation Results

Conclusion and Plan

▲□▶▲□▶▲□▶▲□▶ □ のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Results Summary for 15 sensors

	p_x in MQ	p_x in FF
Nominal	0.9 ± 0.1	$\textbf{0.9}\pm\textbf{0.1}$
Ultra Low	0.9 ± 0.1	0.9 ± 0.1
Nominal (good BPMs)	0.8 ± 0.15	$\textbf{0.7}\pm\textbf{0.2}$
Ultra Low (good BPMs)	$\textbf{0.8} \pm \textbf{0.15}$	$\textbf{0.7}\pm\textbf{0.2}$

GM feedback and GM effect detection

Y. Renier

ntroduction

Cases studied

Simulation Results

Conclusion and Plan

	p_y in MQ	p_y in FF
Nominal	0.75 ± 0.15	0.7 ± 0.15
Ultra Low	0.75 ± 0.15	0.9 ± 0.1
Nominal (good BPMs)	0.75 ± 0.2	0.55 ± 0.15
Ultra Low (good BPMs)	0.75 ± 0.2	$\textbf{0.75} \pm \textbf{0.15}$

MQ = Matching Quadrupoles

Headlines

Introduction

Cases studied

Simulation Results

Conclusion and Plan

GM feedback and GM effect detection

Y. Renier

ntroduction

Cases studied

Simulation Results

Conclusion and Plan

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Conclusion & Plan

Conclusion

- Beam jitter subtraction is critical.
- Detection seems difficult but should be feasible with the current configuration.
- Great improvement with the 5 first BPMs upgraded.
- Ultra Low β does not help (limited by jitter subtraction).
- ► FONT BPMs does not help either (near good BPMs).

Plan

- 15 sensors available and acquisition system is ready.
- Testing is ongoing (see Andrea's talk).
- Then ship everything to ATF.
- Measurements at ATF2 this year.

GM feedback and GM effect detection

Y. Renier

Introduction Cases studied Simulation Results

Conclusion and Plan