

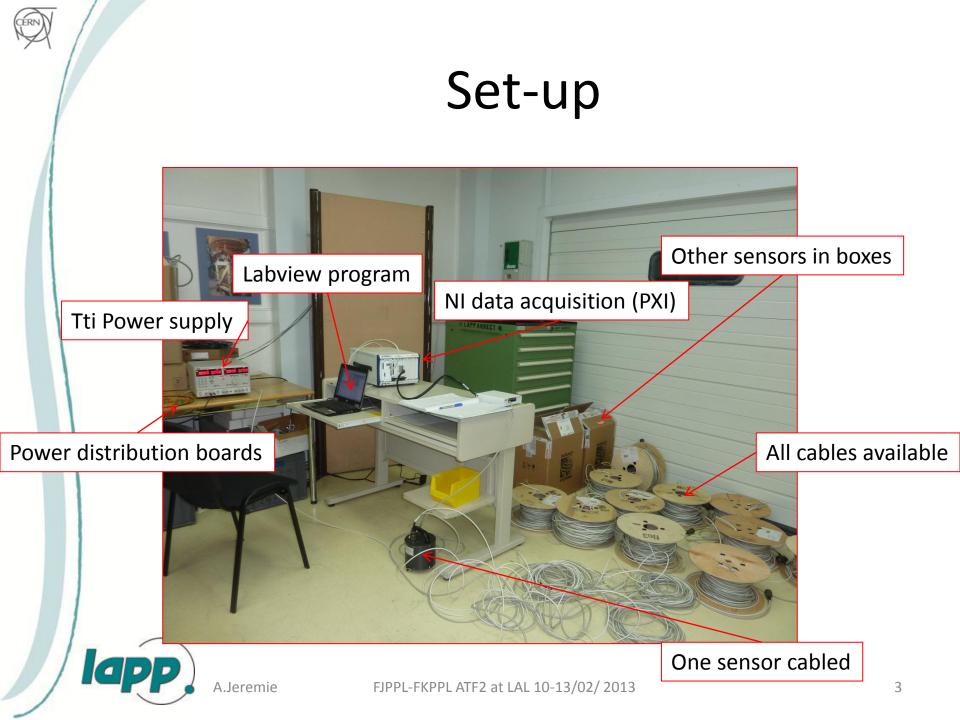


### GM sensor tests and installation

#### A.Jeremie

#### K.Artoos, D. Kudryavtsev, Y.Renier, R.Tomas-Garcia, D.Schulte






## LAPP-CERN involvement



- Already done:
  - Purchase by LAPP of 15 Guralp 6T for 52 000€.
  - Purchase by CERN of special low noise long cables
  - DAQ system developed by CERN
- Still to do:
  - Instrumentation preparation by LAPP-CERN: if system with 15 sensors and signal quality OK
  - LAPP installation of cables, sensors and tests at KEK
  - Determine Labview-EPICS connection : CERN, Glenn and LAPP
  - Data handling CERN-LAPP





#### Sensor characteristics



| eristics         | Velocity output bandwidth                                                                 | 1 s – 100 Hz (Model CMG-6T-1),<br>10 s – 100 Hz (Standard) or                                                                                    |
|------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | Velocity output sensitivity                                                               | 30 s – 100 Hz<br>2 × 1200 V/m/s, (Standard)<br>2 × 2000 V/m/s or<br>2 × 1000 V/m/s                                                               |
|                  | Peak output<br>Optional high gain sensitivity                                             | ±10 V (20 V peak-to-peak)<br>2 × 10000 V/m/s (adjustable)                                                                                        |
| 6.               | Lowest spurious resonance<br>Linearity<br>Cross-axis rejection<br>Electronics noise level | 450 Hz<br>> 90 dB<br>> 65 dB<br>–172 dB (rel. 1m2s-4Hz-1)                                                                                        |
|                  | Operating temperature<br>Temperature sensitivity<br>Mass recentring range<br>Materials    | -40 to +75 °C<br>< 0.6 V per 10 °C<br>±3 ° from horizontal<br>Hard anodised aluminium case<br>Gold plated contacts<br>O-ring seals throughout    |
|                  | Case diameter<br>Case height (with handle)<br>Weight                                      | 154 mm<br>207 mm<br>2.49 kg                                                                                                                      |
|                  | Power supply<br>Optional low power sensor<br>Current at 12 V DC                           | 10 – 36 V DC<br>5 V DC supply (output ±4.5 V)<br>38 mA                                                                                           |
| FJPPL-FKPPL ATF: | Calibration controls<br>Offset zeroing<br>Optional remote control<br>Optional accessories | Common signal & enable lines<br>exposed on sensor connector<br>Adjustable through case<br>Offset zeroing with DC motors<br>Handheld Control Unit |

A.Jeremie

## Things to do before shipment

- Make the system work for one sensor: Labview program and Power supply...still learning...limited resources
- Make adjustments if needed
- Redo the test for 15 sensors
- Prepare cabling at KEK for the joint for « Open days » => cable soldering possible at KEK or need to prepare our own?
- Prepare the power supply for 60Hz 110V operation
- Prepare the different shipments: CERN material (need to go back to CERN before shipment to KEK?) and LAPP material (directly to KEK)=> sensors can move easily so not a donation, but for more than one year (taxes!)
- Last time (September 2008) between shipment preparation and arrival at KEK after customs, the shipment took 6 weeks. Need to take this into account.





## Things to do once at KEK

- Unpack 15 sensors and acquisition system.
- Acquisition system in electronics hut in front of QF11X.
- Sensors on floor below sensors : need leveling and orientation to measure vertical and transverse direction (from first magnet after extraction to QD0).
- Place the cables through wall and to the sensors. Are there special instructions for this step?
- Connect (soldering) the extra connectors for OPEN Day passage.
- Start the acquisition of the sensors and make sure everything works as in Annecy.
- Synchronize the measurements with ATF2 (Labview to EPICS and timing).
- Test if one can measure the sensors through ATF2.
- Test if the measurement can be used for feedback/feedforward purposes.



In red: will need help from CERN, SLAC and ATF2 colleagues.

# FD versus IP-BPM table vibrations

- With new heavy QD1 and new IP-BPM chamber, it would be good to redo the relative vibration measurements.
- Extra week for measurements?
- Could be quick if one

measurement.

Not necessarily at the same time

as sensor installation.



### Possible plan (under work)



Still need to optimize the persons needed for operations:

Golden Week and sensor installation and tests

Integration (if still needed) and first IP-QF1 relative motion meas.

Start testing with beam

A.Jeremie

#### LAViSta moves to new building in March...

(needs to be compatible with ATF2 work! But room not ready!)



PERSEPCTIVE AERIENNE DEPUIS LE LAPP

New room allows precision vibration measurements:

- Ground floor=> avoids vibration amplification
- Oriented to the North=> avoids large temperature variations
- Direct outside door=> easy delivery of heavy objects (magnets, optical tables...)
- 2t crane => move large objects
- 2m hole => low noise measurements for sensor characterization