

ILC Accelerator

A 25-year effort towards an e⁺e⁻ collider

Nan Phinney SLAC

ILC Worldwide Event, Fermilab, June 12, 2013

(Many slides courtesy of Marc Ross, Akira Yamamoto, Barry Barish)

ilC

A Possible Apparatus for Electron-Clashing Experiments (*). M. Tigner

Laboratory of Nuclear Studies. <u>Cornell University</u> - Ithaca, N.Y.

M. Tigner, Nuovo Cimento 37 (1965) 1228

"While the storage ring concept for providing clashingbeam experiments (¹) is very elegant in concept it seems worth-while at the present juncture to investigate other methods which, while less elegant and superficially more complex may prove more tractable."

For a $E_{cm} = 1$ TeV machine: Effective gradient G = 500 GV / 15 km

= 34 MV/m real-estate gradient

Cost scaling:storage ring $\$_{tot} \propto E^2$ linear collider $\$_{tot} \propto E$

5

The *Luminosity* Issue

- High current (n_b N)
- High efficiency
 (P_{RF}→P_{beam})

- High Beam Power
- Small IP vertical beam size

- Small emittance ε_{y}
- strong focusing (small β*_y)

The Luminosity Issue • • Superconducting **RF** Linac Technology (SCRF)

- High current (n_b N)
- High efficiency (P_{RF}→P_{beam})

- Small emittance ε_{v}
- strong focusing (small β*_y)

the Big Jump from SLC to ILC:										
	n Beam P	ower (P _{beam}) X	100,							
collision beam size (σ_y^*) 1/100 and Luminosity (1) X 104										
SLC / ILC Comparison										
		SLC	ILC							
	$E_{ m cm}$	100	500	GeV						
	P _{beam}	0.04	5	MW						
	σ^*_y	500	6	nm						
	$\delta E/E_{\rm bs}$	0.03	4	%						
	L	3×10 ⁻⁴	1.8	$10^{34} \text{ cm}^{-2} \text{s}^{-1}$						

LINEAR COLLID 1st LC Technology Review - 1994

Only one scheme (of 8) was superconducting

E_{cm}=500 GeV

		TESLA	SB	LC	JLC-S	JLC-C	JLC-X	NLC	VLEPP	CLIC
f [GHz]	/	1.3	60	.0	2.8	5.7	11.4	11.4	14.0	30.0
$L \times 10^{33}$ [cm ⁻² s ⁻¹]		6	2		4	9	5	7	9	1-5
P _{beam} [MW]		16.5	7	.3	1.3	4.3	3.2	4.2	2.4	~1-4
P _{AC} [MW]		164	1:	9	118	209	114	103	57	100
γε _y [×10 ⁻⁸ m]		100	б	0	4.8	4.8	4.8	5	7.5	15
σ_{y}^{*} [nm]		64	2	8	3	3	3	3.2	4	7.4

LINEAR COLL 2nd LC Technology Review - 2002

E_{cm}=500 GeV

	TESLA	SBL	_C	JLC-S	J	LC-C	JLC-X/NLC	VLEPP	CLIC	
f [GHz]	1.3					5.7	11.4		30.0)
$L \times 10^{33}$ [cm ⁻² s ⁻¹]	34			-	ented	14	20		dy	
P _{beam} [MW]	11.3				prese	5.8	6.9		it Rea	
P _{AC} [MW]	140				lot Re	233	195		No	
γε _y [×10 ⁻⁸ m]	3				2	4	4		1	
σ_y^* [nm]	5					4	3		1.2	

International Committee for Future Accelerators (ICFA) representing major particle physics laboratories worldwide convened a panel to choose the collider technology.

In Beijing 2004, ICFA accepted the ITRP recommendation.

- Chose ILC accelerator technology (SCRF)
- Determined ILC physics
 design parameters
- Formed Global Design Effort and Mandate (TDR)

E_{cm}=500-1000 GeV

	ILC	SBLC	JLC-S	JLC-C	JLC-X/NLC	VLEPP	CLIC
f [GHz]	1.3						30.0
$L \times 10^{33}$ [cm ⁻² s ⁻¹]	≥20						21
P _{beam} [MW]	5-23						4.9
P _{AC} [MW]	140-300						175
γε _y [×10 ⁻⁸ m]	3-8						1
σ_{y}^{*} [nm]	3-8						1.2

ILC and CLIC: 2013

E_{cm} =500-1000 GeV

	ILC	SBLC	JLC-S	JLC-C	JLC-X/NLC	VLE	PP	CLIC
f [GHz]	1.3							11.4
$L \times 10^{33}$ [cm ⁻² s ⁻¹]	18						eady	23
P _{beam} [MW]	5						Not R	4.9
P _{AC} [MW]	160	Т	his talk				t still	257
γε _y [×10 ⁻⁸ m]	3						er, bu	1
σ_{y}^{*} [nm]	6						Close	1.2

• 11NEAR OF 25 year – long effort towards a very high performance e+ / e- collider

Year	1987	1992	2	1998		2004		2	2006		2012	
Phase	SLC 《	D SL	AC		LC	Design		<u>Glob</u>	al D	esign Eff	ort -	· ILC
500 GeV Linear Collider R & D	8 sch	em	es			4				2	2	→
Comparative Reviews			Technolo Review 1995	вy		Technolo Review 2002	gy	Internation Technology Review Pan 2004	al el		'Gen	eral issues' ILC/CLIC
						NLC	CTA	TTF	/ F	LASH		
Beam Test Facilities - Linac (cost-driver)	(SLA	C)									N S O	ML, STF, CTF
Beam Test Facilities - Emittance			FFTB			ATF			C	CesrTA		ATF2

Requirements from Physics Experiments

- Basic requirements:
- Luminosity : $\int Ldt = 500 \text{ fb}^{-1} \text{ in 4 years}$
- + E_{cm} : 200 500 GeV and the ability to scan
- E stability and precision: < 0.1%
- Electron polarization: > 80%
- Extension capability:
- Energy upgrade: 500 → 1,000 GeV

Reference Design - 2007

LINEAR COLLIDER COLLABORATION

RDR (2007) to TDR (2012)

Flat-land or Mountainous Tunnel Design Nan Phinney, 6/12/13

Over-moded

waveguide

installed cryomodule

Major R&D Efforts in TD Phase

SCRF technology and beam acceleration :

- Cavity Gradient required: 31.5 MV/m
 - <u>ILC SCRF cavity R&D</u>
 - Effort for ~ 7 x Gradient (KEK-TRISTAN, CERN-LEP)
 - Gradient Progress : < 37 MV/m> (Record : 46 MV/m at DESY)
 - System engineering : S1-Global program with global effort
- Industrialization of cavity production

Electron Cloud Mitigation (CESR-TA)

Nano-beam handling :

- ILC requires a beam size ~ 6 nm (vertical) and stability ~2nm:
 - Progress in KEK-ATF2:
 - achieved ~70 nm (at 1.3 GeV),
 - corresponding to 10 nm (at 250 GeV, ILC)

Global Plan for SCRF R&D

Year	07	200	2008 2009 2		2010	2011	2012		
Phase	TDP-1						TDP-2		
Cavity Gradient in vert test to reach 35 MV/m	→ Yield 50% →						> Yield 90%		
Cavity-string to reach 31.5 MV/m, with one- cryomodule		Global effort for string assembly and test (DESY, FNAL, INFN, KEK)							
System Test with beam acceleration			FLA	ASH (I QB, S	DESY) STF2) , NML (KEK)	./ASTA (F	NAL)	
Preparation for Industrialization				-	Produ	ction	Technolo	gy R&D	
Communication with industry:	1 st Visit V 2 nd visit a 3 rd comm	 1st Visit Vendors (2009), Organize Workshop (2010) 2nd visit and communication, Organize 2nd workshop (2011) 3rd communication and study contracted with selected vendors (2011-20rd) 						011-2012)	

Progress in SCRF Cavity Gradient

Production yield: 94 % at > 28 MV/m,

Average gradient: 37.1 MV/m

reached in 2012

- 12.6 m long; 1 m diameter
 - (Similar to LHC dipole)
 - 8 cavities w / SC quad magnet in middle

View along main linac:

KEK-ATF: Progress

Ultra-small beam

- Low emittance : KEK-ATF
 - Achieved the ILC goal (2004).
- Small vertical beam size : KEK ATF2
 - Goal = 37 nm,
 - 160 nm (spring, 2012)
 - ~70 nm (Dec. 2012) at low beam current

INEAR COLLIDER Global Cooperation for ILC Accelerator Beam Demonstration

TTF/FLASH (DESY) ~1 GeV ILC-like beam ILC RF unit (* lower gradient)

STF (KEK) operation/construction ILC Cryomodule test: S1-Global Quantum Beam experiment

Cornell

<u>CesrT</u>A (Cornell) electron cloud low emittance

DA^fNE (INFN Frascati) kicker development electron cloud

KEK, Japan

ATF & ATF2 (KEK) ultra-low emittance Final Focus optics KEKB electron-cloud 25

NML facility ILC RF unit test Under construction

Nan Phinney, 6/12/13

Technical Design Report Completed

ILC Accelerator

20 years from 1st idea to 1st prototype SLC 25 more years to a complete ILC design 2013

- TDR complete, Technical- and Cost-Reviews done
- Linear Collider Collaboration is being formed
- Japan plans to select a site this summer

2013-2016

• Prepare a proposal to the funding agencies

The ILC is Good to Go

Quote from ILCSC chair Jonathan Bagger at LC2013 DESY