The ILC Accelerator Complex

Nick Walker – DESY/GDE

International Linear Collider – A Worldwide Event 12 June 2013 CERN, Geneva, Switzerland

N. Walker (DESY) – ILC Worldwide Event – CERN – 12 June 2013

ILC in a Nutshell

- 200-500 GeV $E_{cm} e^+e^-$ collider L ~2×10³⁴ cm⁻²s⁻¹
 - upgrade: ~1 TeV
- SCRF Technology
 - 1.3GHz SCRF with 31.5 MV/m
 - 17,000 cavities
 - 1,700 cryomodules
 - 2×11 km linacs
- Developed as a truly global collaboration
 - Global Design Effort GDE
 - ~130 institutes
 - http://www.linearcollider.org/ILC

500 GeV Parameters

Physics	Max. E _{cm} Luminosity Polarisation (e-/e+) δ _{BS}	500 GeV 1.8×10 ³⁴ cm ⁻² s ⁻¹ 80% / 30% 4.5%
invertians at IP nano-beams beam strong beam Beam strong beam Beam interaction point)	σ_x / σ_y σ_z $\gamma \epsilon_x / \gamma \epsilon_y$ β_x / β_y bunch charge	574 nm / 6 nm 300 μm 10 μm / 35 nm 11 mm / 0.48 mm 2×10 ¹⁰
	Number of bunches / pulse Bunch spacing Pulse current Beam pulse length Pulse repetition rate	1312 554 ns 5.8 mA 727 μs 5 Hz
Accelerator (general)	Average beam power Total AC power (linacs AC power	10.5 MW (total) 163 MW 107 MW)

ilc

1.3 GHz Superconducting RF Cavity

- solid niobium
- standing wave
- 9 cells
- operated at 2K (LHe)

- 35 MV/m
- $Q_0 \ge 10^{10}$

The Quest for High Gradient

İİĻ

Road to High Performance

Electropolishing

800° C annealing and 120° C baking

Worldwide gradient R&D

Test Date (number of cavities)

GDE global database Qualified cavity vendors

İİL

Asia – KEK; Europe – DESY; US – JLab, FNAL, ANL Asia – 2; Europe – 2; US – 1

ic

ilc

ic

ilc

ilr

ir

ilc

ΪĻ

ίiί

ilc

shield wall removed

Worldwide Cryomodule Development

CM1 at FNAL NML module test facility

S1 Global at KEK SRF Test Facility (STF)

PXFEL 1 installed at FLASH, DESY, Hamburg

Worldwide Cryomodule Development

PXFEL 1 installed at FLASH, DESY, Hamburg

Worldwide Cryomodule Development

PXFEL 1 installed at FLASH, DESY, Hamburg

FLASH@DESY 9mA Experiment

Development (LLRF & controls):

- tuning algorithms
- automation
- quench protection etc.

10.00

European XFEL @ DESY

Institute	Component Task		
CEA Saclay / IRFU, France	Cavity string and module assembly; cold beam position monitors		
CNRS / LAL Orsay, France	RF main input coupler incl. RF conditioning		
DESY, Germany	Cavities & cryostats; contributions to string & module assembly; coupler interlock; frequency tuner; cold- vacuum system; integration of superconducting magnets;		
INEN Milano, Italy	Coulties & crucetate		
Calkan hast Dalard			
Soltan Inst., Poland	Higher-order-mode coupler & absorber		
CIEMAT, Spain	Superconducting magnets		
IFJ PAN Cracow, Poland	RF cavity and cryomodule testing		
RINP Russia	Cold vacuum components		

The ultimate 'integrated systems test' for ILC. Commissioning with beam 2nd half 2015

Beyond the SCRF Main Linacs

iil

Central Region

• 5.6 km region around IR

• Systems:

- electron source
- positron source
- beam delivery system
- RTML (return line)
- IR (detector hall)
- damping rings

• Complex and crowded area

common tunnel

Damping Rings

Circumference		3.2	km
Energy		5	GeV
RF frequency		650	MHz
Beam current		390	mA
Store time		200 (100)	ms
Trans. damping time		24 (13)	ms
Extracted emittance	х	5.5	μm
(normalised)	у	20	nm
No. cavities		10 (12)	
Total voltage		14 (22)	MV
RF power / coupler		176 (272)	kW
No.wiggler magnets		54	
Total length wiggler		113	m
Wiggler field		1.5 (2.2)	Т
Beam power		1.76 (2.38)	MW

Values in () are for 10-Hz mode

Many similarities to modern 3rd-generation light sources

Critical R&D: Electron Cloud

ΪĹ

- Extensive R&D programme at CESR, Cornell (CesrTA)
- Instrumentation of wiggler, dipole and quad vacuum chambers for ecloud measurements
 - RFA
- low emittance lattice

Critical R&D: Electron Cloud

Wiggler Center Pole Comparison: 1x45 e+, 2.1 GeV, 14ns Average collector current density (nA/mm^2) Cu Via1W 5/2/10 (Cu) 16 Vig2B 1/31/09 (TiN) Wig2B 12/5/09 (Grooved) TiN Wig2B 5/2/10 (Electrode) reduced SYE 12 10 8 grooved electrode 60 70 80 50 2030 40 10 Beam current (mA)

İİİ.

- Extensive R&D programme at CESR, Cornell (CesrTA)
- Instrumentation of wiggler, dipole and quad vacuum chambers for ecloud measurements
 - RFA
- low emittance lattice
- Example: wiggler vacuum chamber
- Benchmarking of simulation codes
 - cloud build-up
 - beam dynamics (head-tail instabilities)

Positron Source (central region)

Drive Electron Beam Energy (GeV)

ilr

electron Beam Delivery System

IR region (Final Doublet)

• FD arrangement for push pull

different L*

İİĻ

- ILD 4.5m, SiD 3.5m
- Short FD for low E_{cm}
 - Reduced β_x^*
 - increased collimation depth
 - "universal" FD
 - avoid the need to exchange FD
 - conceptual requires study

Many integration issues remain

- requires engineering studies beyond TDR
- No apparent show stoppers

MDI (Detector Hall)

Final Focus R&D: ATF2 @ KEK

ilr

Formal international collaboration

Final Focus R&D: ATF2 @ KEK

Test bed for ILC final focus optics

- strong focusing and tuning (37 nm)
- beam-based alignment
- stabilisation and vibration (fast feedback)
- instrumentation

İİİ

Beyond the Baseline

Concept: increase n_b from
 – Reduce linac bunch spacing

 $1312 \rightarrow 2625$ 554 ns \rightarrow 336 ns

• Doubles beam power \rightarrow ×2 L = 3.6×10³⁴ cm⁻²s⁻¹

- AC power: 161 MW \rightarrow 204 MW (est.)
 - shorter fill time and longer beam pulse results in higher RF-beam efficiency (44% → 61%)

ilc .

Luminosity Upgrade

Damping Ring:

Energy (TeV) upgrade

250 GeV staged LHF

İİĹ

TDR Value Estimate

7.8 Billion ILCU22.6 Million person-hours

TDR Value Estimate

Unsung Heroes

Not high-tech

 But equally important and challenging

 And 30% of the total project cost!

Looking towards the East

ir

Thank you for your attention 😳

N. Walker (DESY) - ILC Worldwide Event - CERN - 12 June 2013

Backup / spares

Example Construction Schedule

access tunnel ex. cavern ex.

ilr

hall ex.

civil construction

- beam tunnel ex.
- concrete lining
 - invert & drainage
- shield wall
- BDS tunnel ex.
- BDS serv. tunnel ex.
- survey & support
- electrical
 - piping & ventilation
 cabling
 - supportsmachine installation

TeV Parameters (2 sets)

ir iii		TeV	Parameters (2 set
Beam energy	GeV	500	
Collision rate Number of bunches Bunch population	Hz ×10 ¹⁰	4 2450 1.74	← P _{AC} constrained ≤300 MW
Bunch separation Pulse current RMS bunch length Electron RMS energy spread Positron RMS energy spread Electron polarisation Positron polarisation	ns mA mm %	366 7.6 0.25 0.225 0.08 0.09 0.04 0.05 80 30	shorter bunch length (within BC range)
Horizontal emittance Vertical emittance IP horizontal beta function IP vertical beta function IP RMS horizontal beam size IP RMS veritcal beam size	mm nm mm mm nm	10 30 22.6 11.0 0.25 481 335 2.8	horizontal focusing main difference
Luminosity Fraction of luminosity in top 1% Average energy loss Number of pairs per bunch crossing Total pair energy per bunch crossing	×10 ³⁴ cm ⁻² s ⁻¹ ×10 ³ TeV	3.6 4.9 0.6 0.4 0.06 0.11 200 383 1338 3441	—— low and high beamstrahlung