Physics at the ILC

Sven Heinemeyer, IFCA (CSIC, Spain)

CERN, 06/2013

- 1. The bigger picture
- 2. Physics we can do for sure at the ILC
- **3**. Physics we can do likely at the ILC
- 4. How to go ahead?

1. The bigger picture

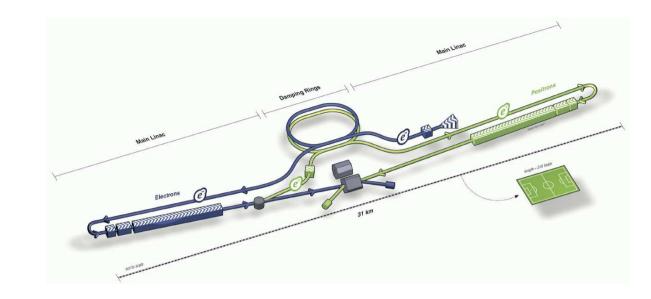
The ILC could start operations in the middle of the next decade

World of High Energy Physics in the year \sim 2025:

LHC detectors (ATLAS/CMS) will have accumulated \sim 300 fb⁻¹

Initial LHC physics goals are accomplished:

- state compatible with a Higgs found corresponding couplings (ratios) measured to 5–30%
- SUSY-like signatures observed (if realized at the EW scale) (or not ...???)
- Extra dimensions or ...-like signatures observed (or not ...???)


LHC probably awaits luminosity upgrade

What can the ILC add?

 \Rightarrow Implicit in the physics to follow!

Linear e^+e^- collider, $\sqrt{s} = 250 - 1000$ GeV

based on superconducting cavities (cold technology)

Energies: $\sqrt{s} = 250 \text{ GeV}$, 350 GeV, 500 GeV ... 1000 GeV

Possible features:

Schematic:

- two detectors in one interaction region (push-pull)
- undulator based e^+ source
- polarized beams for e^- and e^+ ($P_{e^-} = 80\%$, $P_{e^+} = 60\%$)
- tunable energy

• GigaZ:

running with high luminosity at low energies (Z pole, WW threshold)

• $\gamma\gamma$:

use both beams to produce high-energy photons (e.g. heavy Higgs production in the s channel, $\Gamma(H \rightarrow \gamma \gamma)$, ...)

• $e^-\gamma$:

use one e^- beam to produce high-energy photons produce charged particles in the s channel

• e⁻e⁻:

produce doubly charged particles in the s channel

\Rightarrow to optimize physics potential!

Physics at the ILC \Rightarrow determined by experimental data!

Physics at the ILC \Rightarrow determined by experimental data!

What we know for sure:

- discovery of a Higgs particle
- top quark
- gauge bosons: W^{\pm}, Z

- . . .

 \Rightarrow clear physics case

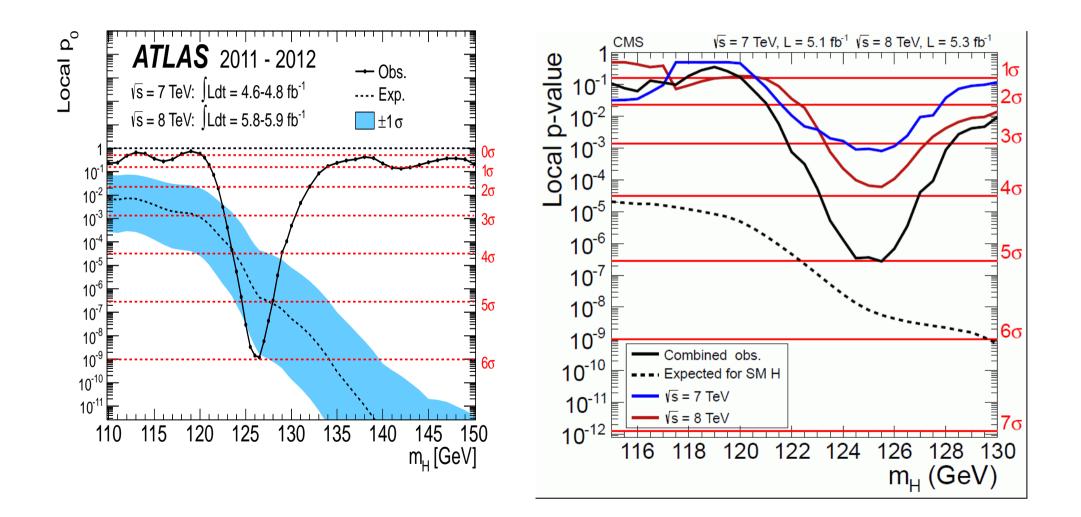
Physics at the ILC \Rightarrow determined by experimental data!

What we know for sure:

- discovery of a Higgs particle
- top quark
- gauge bosons: W^{\pm}, Z

— . . .

 \Rightarrow clear physics case


Other experimental data:

- dark matter
- the anomalous magnetic moment of the muon, $(g-2)_{\mu}$

— . . .

 \Rightarrow "likely" (additional) physics case

We have a discovery!

We have a discovery!

But what is it?

- **Q:** Is it a Higgs boson? \Rightarrow yes according to CERN!
- **Q:** Is it "the" Higgs boson (i.e. of the SM)?
- **Q:** Is it a supersymmetric Higgs boson?
- **Q:** Is it a Higgs boson of a different model?
- **Q:** Is it an impostor?

We have a discovery!

But what is it?

- **Q:** Is it a Higgs boson? \Rightarrow yes according to CERN!
- **Q:** Is it "the" Higgs boson (i.e. of the SM)?
- **Q:** Is it a supersymmetric Higgs boson?
- **Q:** Is it a Higgs boson of a different model?
- **Q:** Is it an impostor?

How can we decide?

How can we establish the Higgs mechanism?

What has to be done?

Find the new particle

- 1. Find the new particle
- 2. measure its mass (\Rightarrow ok?)

- 1. Find the new particle
- 2. measure its mass (\Rightarrow ok?)
- 3. measure coupling to gauge bosons
- 4. measure couplings to fermions

- 1. Find the new particle
- 2. measure its mass (\Rightarrow ok?)
- 3. measure coupling to gauge bosons
- 4. measure couplings to fermions
- 5. measure self-couplings

- 1. Find the new particle
- 2. measure its mass (\Rightarrow ok?)
- 3. measure coupling to gauge bosons
- 4. measure couplings to fermions
- 5. measure self-couplings
- 6. measure spin, \mathcal{CP} , quantum numbers . . .

What has to be done?

- 1. Find the new particle
- 2. measure its mass (\Rightarrow ok?)
- 3. measure coupling to gauge bosons
- 4. measure couplings to fermions
- 5. measure self-couplings
- 6. measure spin, \mathcal{CP} , quantum numbers . . .

done

- 1. Find the new particle done
- 2. measure its mass $(\Rightarrow ok?)$ done
- 3. measure coupling to gauge bosons
- 4. measure couplings to fermions
- 5. measure self-couplings
- 6. measure spin, \mathcal{CP} , quantum numbers . . .

What has to be done?

1. Find the new particle	done	
2. measure its mass (\Rightarrow ok?)	done	L
3. measure coupling to gauge bosons		L
4. measure couplings to fermions		L
5. measure self-couplings		
6. measure spin, \mathcal{CP} , quantum numbers		

L = LHC,

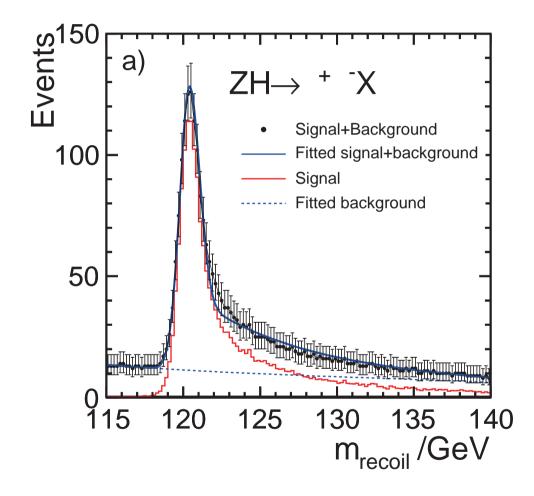
What has to be done?

1. Find the new particle	done	
2. measure its mass (\Rightarrow ok?)	done	L
3. measure coupling to gauge bosons		L
4. measure couplings to fermions		L
5. measure self-couplings		L
6. measure spin, \mathcal{CP} , quantum numbers		L

L = LHC, L = LHC (partially/unclear),

1. Find the new particle	done		
2. measure its mass (\Rightarrow ok?)	done	LI	
3. measure coupling to gauge bosons		LI	
4. measure couplings to fermions		LI	
5. measure self-couplings		LI	
6. measure spin, \mathcal{CP} , quantum numbers		LI	
L = LHC, $L = LHC$ (partially/unclear), $I = ILC$	C, I=	: ILC (doa	able?)

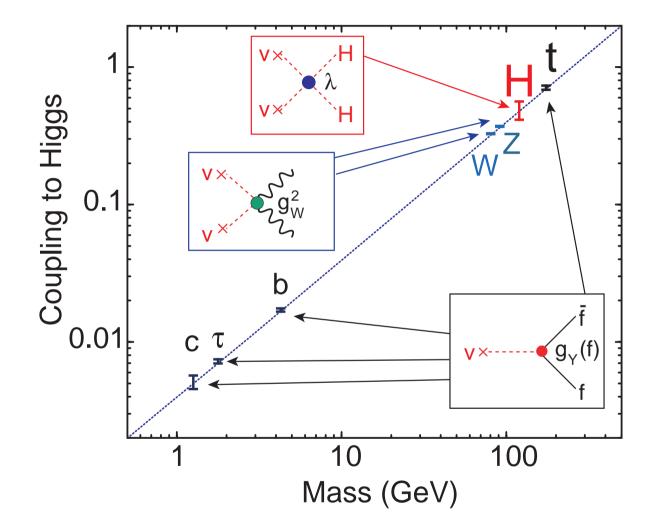
What has to be done?


1. Find the new particle	done			
2. measure its mass (\Rightarrow ok?)	done	L	Ι	
3. measure coupling to gauge bosons		L	Ι	
4. measure couplings to fermions		L	Ι	
5. measure self-couplings		L	Ι	
6. measure spin, \mathcal{CP} , quantum numbers		L	Ι	

L = LHC, L = LHC (partially/unclear), I = ILC, I = ILC (doable?) The LHC can investigate the Higgs mechanism and tell us a lot!

What has to be done?

1. Find the new particle	done			
2. measure its mass (\Rightarrow ok?)	done	L	Ι	
3. measure coupling to gauge bosons		L	Ι	
4. measure couplings to fermions		L	Ι	
5. measure self-couplings		L	Ι	
6. measure spin, \mathcal{CP} , quantum numbers		L	Ι	
L = LHC, $L = LHC$ (partially/unclear), $I = ILC$	C, I =	ILC	(doable?)	
The LHC can investigate the Higgs mechanism and tell us a lot!				
We need the ILC to fully establish the Higgs mechanism!				


Z-recoil method:
$$e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^-X$$

 \Rightarrow crucial for a model independent coupling measurement!

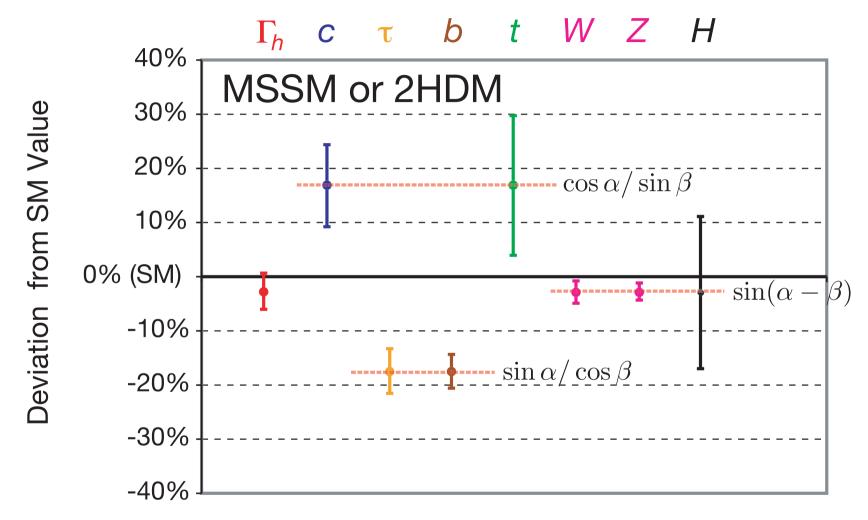
 $\delta M_H^{\rm exp} \lesssim 0.05 {
m ~GeV}$

 \Rightarrow clear, testable prediction!

\Rightarrow ILC can test all three types!

ILC: absolute couplings, total width, invisible width, ...

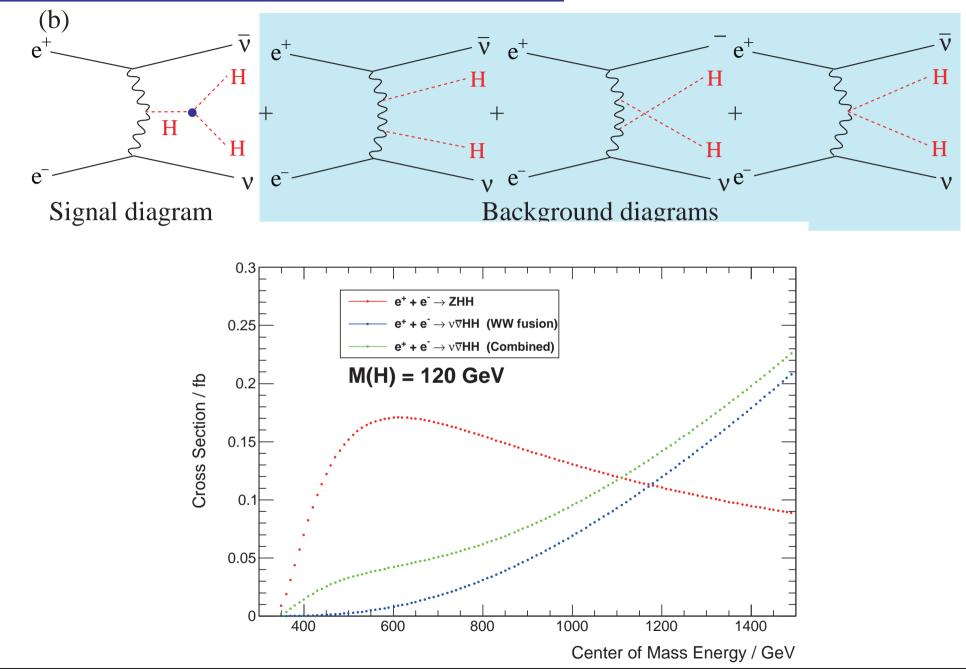
Expected precision for fermionic and gauge decay modes: [ILC TDR '13]


	$\Delta(\sigma \cdot BR) / (\sigma \cdot BR)$			$\Delta g/g$
	<i>ZH</i> @ 250 GeV	<i>ZH</i> @ 500 GeV	$ u \overline{ u} H$ @ 500 GeV	
mode	(250 fb^{-1})	$(500 \ { m fb}^{-1})$	$(500 \ {\rm fb}^{-1})$	combined
$H \rightarrow b\overline{b}$	1.0%	1.6%	0.60%	1.3%
$H \to \tau^+ \tau^-$	3.6%	4.6%	11%	1.8%
$H \to c \overline{c}$	6.9%	11%	5.2%	2.3%
$H \rightarrow gg$	8.5%	13%	5.0%	2.4%
$H \to WW^*$	8.1%	12.5%	3.0%	1.9%
$H \to ZZ^*$	26%	34%	10%	4.7%
$H \to \gamma \gamma$	23-30%	29-38%	19-5%	(13-17%)

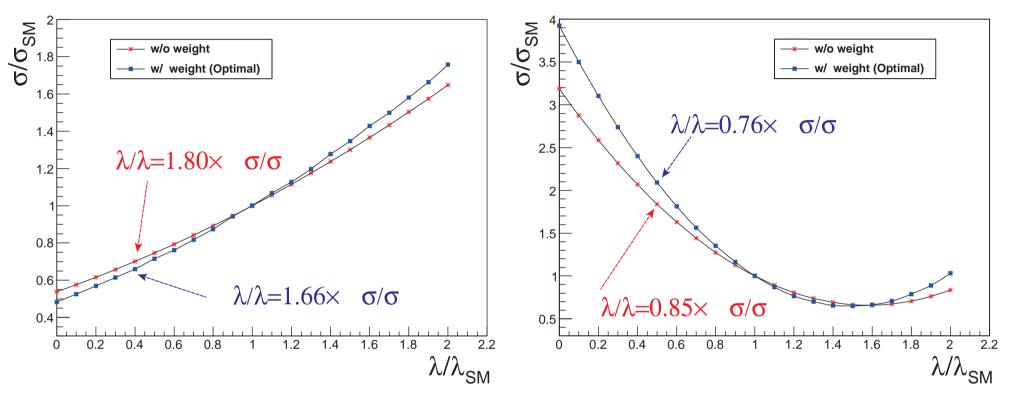
Total width: $\Delta \Gamma_H / \Gamma_H$: 4.8% – 1.2%

Invisible width: $\Delta \Gamma_{inv} / \Gamma_{inv}$: 0.44 - 0.26% ($\sqrt{s} = 250 - 1000 \text{ GeV}$)

 \Rightarrow discrimination between models! \Rightarrow possible deviations: \mathcal{O} (few%)

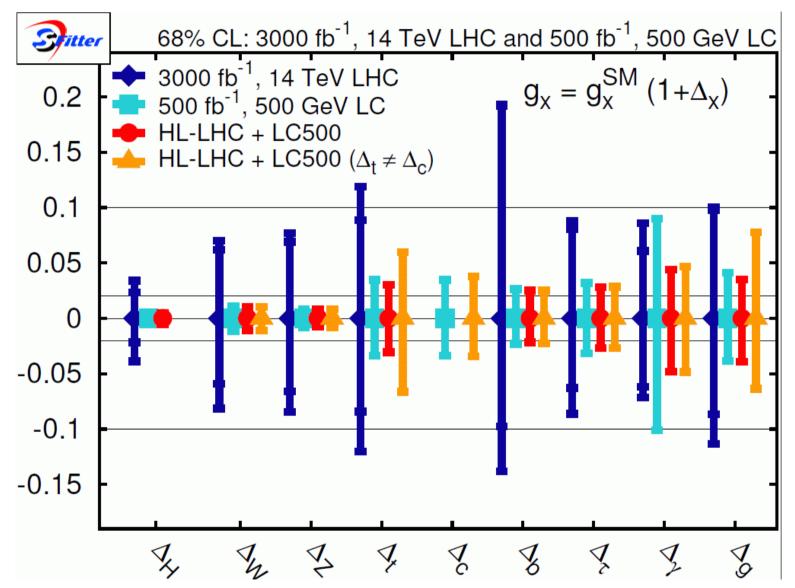

Example: Higgs couplings in the 2HDM:

\Rightarrow measurable deviations


Particularly challening: Higgs self-coupling

[ILC TDR '13]

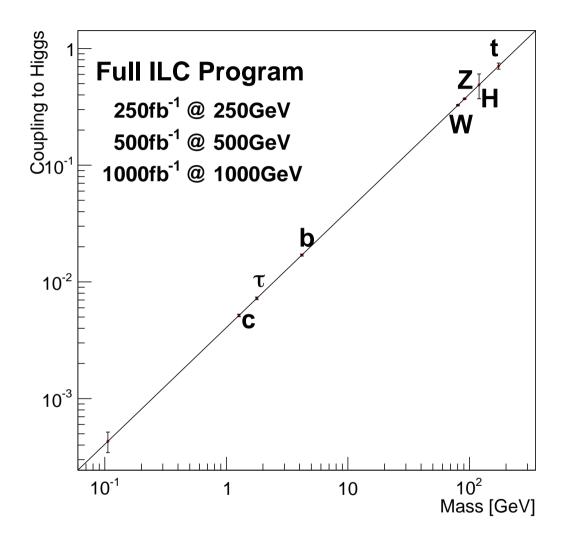
ZHH@500 GeV


 $\nu \bar{\nu} HH@1000$ GeV

\Rightarrow currently full simulations are performed

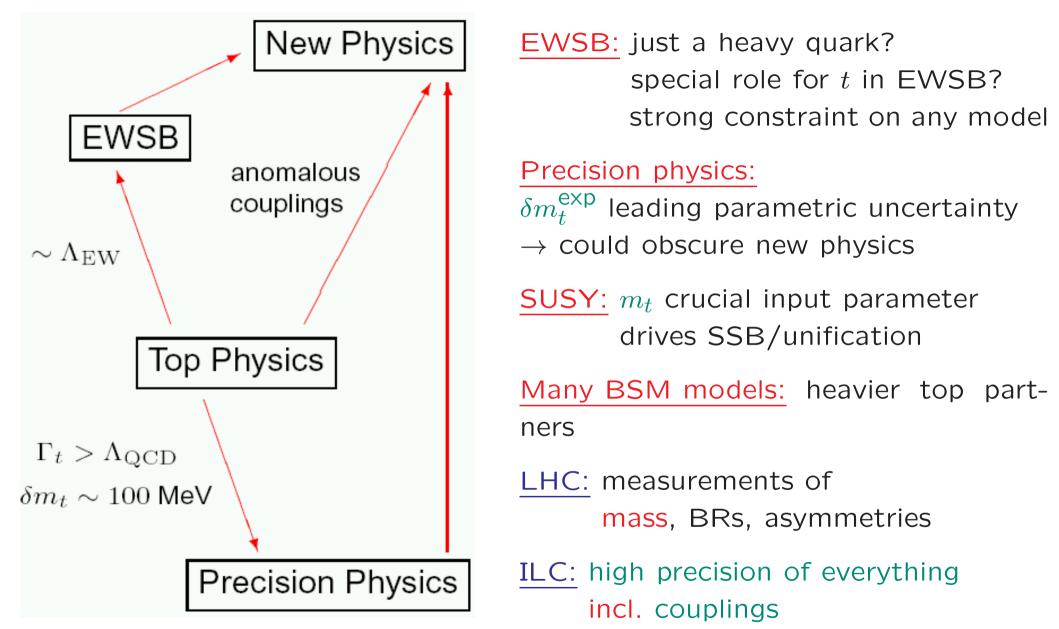
Expected sensitivity on
$$\lambda$$
: ~ 21% (2 ab⁻¹ @ 1000 GeV) [ILC TDR '13]

Fitting all Higgs couplings together (note: LHC requires theory assumptions)



 \Rightarrow clear and strong improvement from ILC measurements!

Sven Heinemeyer (CSIC, Spain) ILC TDR Launch, CERN, 12.06.2013


[SFitter '13]

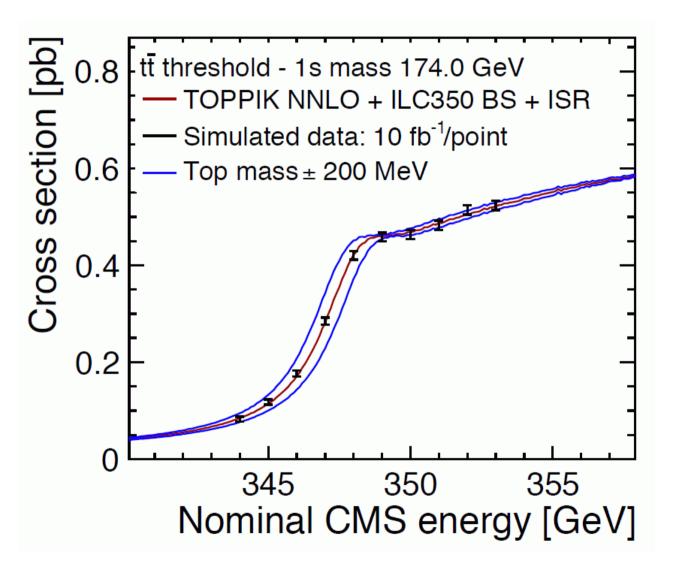
putting everything together:

\Rightarrow any deviation from straight line indicates BSM physics!

Top physics at the ILC

Particle masses are not direct physical observables one can only measure cross sections, decay rates, ...

Additional problem for the top mass:


what is the mass of a colored object?

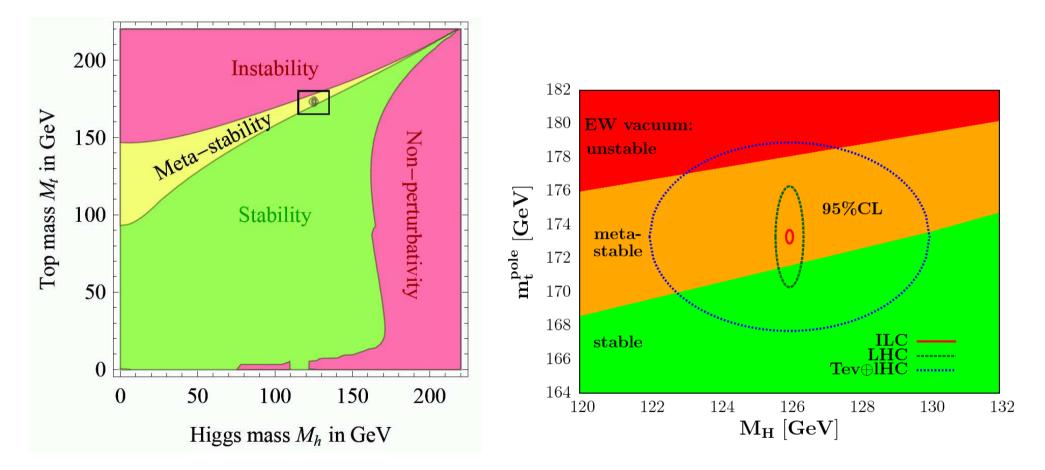
Top pole mass is not IR safe (affected by large long-distance contributions), cannot be determined to better than $O(\Lambda_{QCD})$

Measurement of m_t :

- At Tevatron, LHC: kinematic reconstruction, fit to invariant mass distribution
 ⇒ "MC" mass, close to "pole" mass?
- At the ILC: unique possibility threshold scan \Rightarrow threshold mass \Rightarrow **SAFE!** transition to other mass definitions possible, $\delta m_t \lesssim 100 \text{ GeV}$

At the ILC: unique possibility threshold scan \Rightarrow threshold mass \Rightarrow **SAFE!**

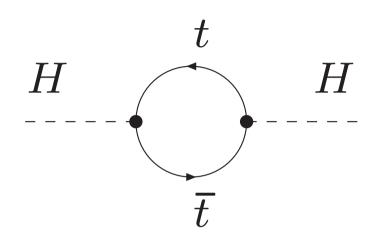
transition to other mass definitions possible $\Rightarrow \delta m_t^{\text{exp+theo}} \sim 0.1 \text{ GeV}$


Sven Heinemeyer (CSIC, Spain) ILC TDR Launch, CERN, 12.06.2013

[ILC TDR '13]

Top mass in the SM: crucial for the Fate of the universe

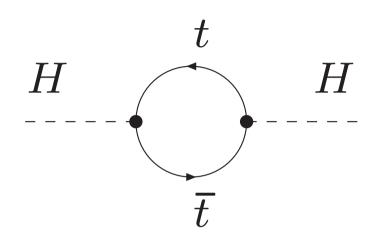
[Degrassi et al. '12] [Alehkin et al. '12]


Is the Higgs potential (and thus our universe) stable? (neglecting gravity/Planck scale)

\Rightarrow ILC precision for m_t needed!

Top/Higgs physics in BSM:

Nearly any model: large coupling of the Higgs to the top quark:


 \Rightarrow one-loop corrections $\Delta M_H^2 \sim G_\mu m_t^4$

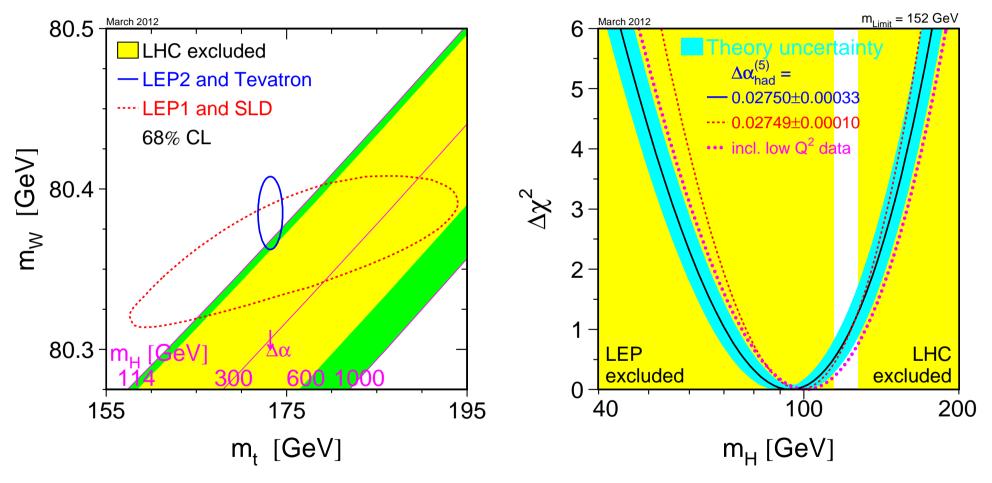
 $\Rightarrow M_H$ depends sensitively on m_t in all models where M_H can be predicted (SM: M_H is free parameter)

SUSY as an example: $\Delta m_t \approx \pm 1 \text{ GeV} \Rightarrow \Delta M_h \approx \pm 1 \text{ GeV}$

Top/Higgs physics in BSM:

Nearly any model: large coupling of the Higgs to the top quark:

 \Rightarrow one-loop corrections $\Delta M_H^2 \sim G_\mu m_t^4$


 $\Rightarrow M_H$ depends sensitively on m_t in all models where M_H can be predicted (SM: M_H is free parameter)

SUSY as an example: $\Delta m_t \approx \pm 1 \text{ GeV} \Rightarrow \Delta M_h \approx \pm 1 \text{ GeV}$

\Rightarrow Precision Higgs physics needs ILC precision top physics

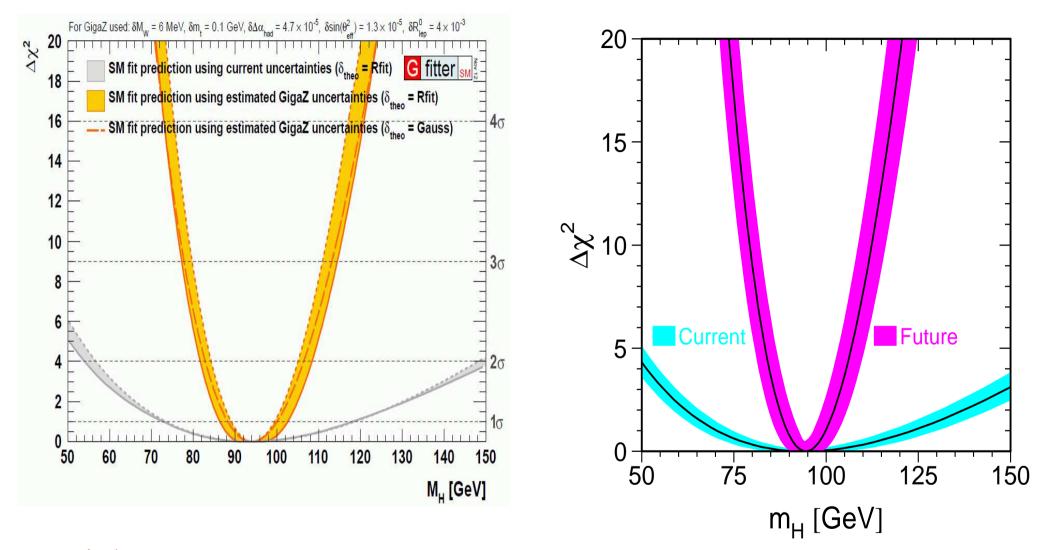
 \Rightarrow indirect prediction of the Higgs mass in the SM

[LEPEWWG '12]

\Rightarrow fits with today's precision

Improvements with the ILC:

Experimental errors of the precision observables:


	today	Tev./LHC	ILC	GigaZ
$\delta \sin^2 \theta_{\rm eff}(\times 10^5)$	16	16		1.3
δM_W [MeV]	15	$\lesssim 15$	5-6	5-6
δm_t [GeV]	0.9	\lesssim 1	0.1	0.1

 M_W : from direct reconstruction and threshold scan [G. Wilson '13]

 $\sin^2 \theta_{\text{eff}}$: 1/2 year GigaZ run, polarization important

 α_s : Improvement from GigaZ run

Most precise M_H test with the ILC:

 $\Rightarrow \delta M_H^{\text{ind}} \lesssim 10 \text{ GeV}$ \Rightarrow extremely sensitive test of SM (and BSM) possible

3. Physics we can do likely at the ILC

The SM cannot be the ultimate theory!

Some facts:

- 1. the hierarchy problem gravity is not included
- 2. Dark Matter is not included
- 3. neutrino masses are not included
- 4. anomalous magnetic moment of the muon shows a $\sim 4 \sigma$ discrepancy

The SM cannot be the ultimate theory!

Some facts:

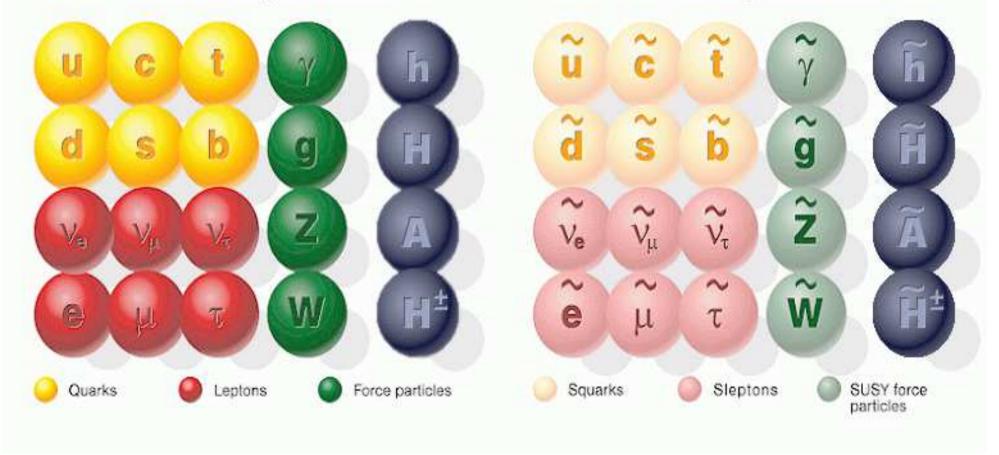
- the hierarchy problem ← physics for the ILC gravity is not included
- 2. Dark Matter is not included \leftarrow physics for the ILC
- 3. neutrino masses are not included \leftarrow physics for the ILC
- 4. anomalous magnetic moment of the muon \leftarrow physics for the ILC shows a $\sim 4 \sigma$ discrepancy

The SM cannot be the ultimate theory!

Some facts:

- 1. the hierarchy problem gravity is not included
- 2. Dark Matter is not included \leftarrow more detailed example
- 3. neutrino masses are not included
- 4. anomalous magnetic moment of the muon \leftarrow more detailed example

shows a \sim 4 σ discrepancy

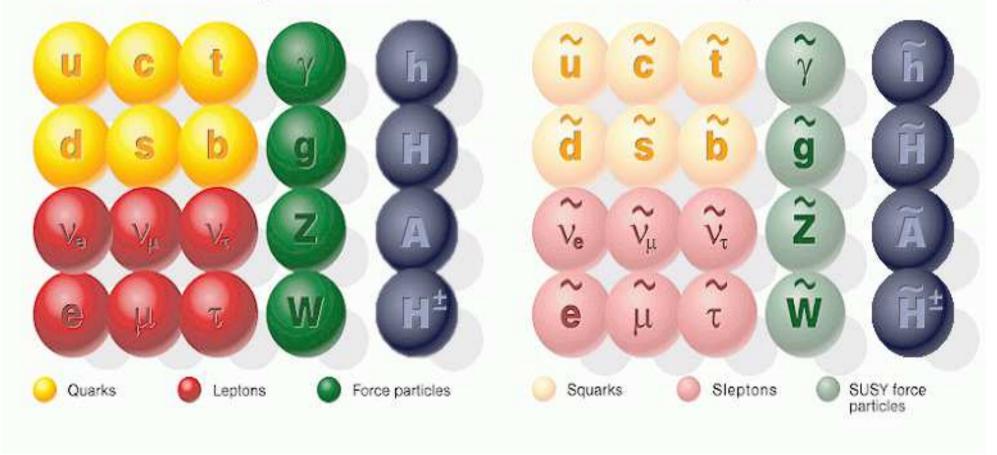

We need physics beyond the Standard Model!

We need physics beyond the Standard Model!

Supersymmetry as a show case:

Standard particles

SUSY particles

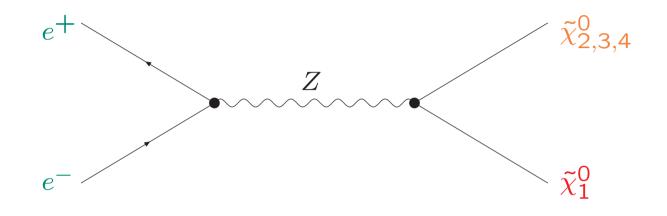


We need physics beyond the Standard Model!

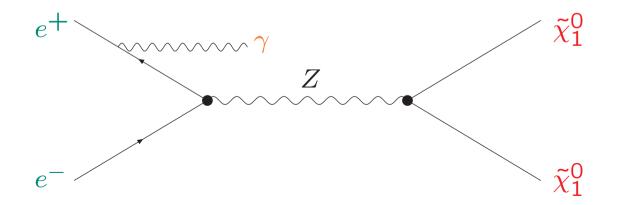
Supersymmetry as a show case:

Standard particles

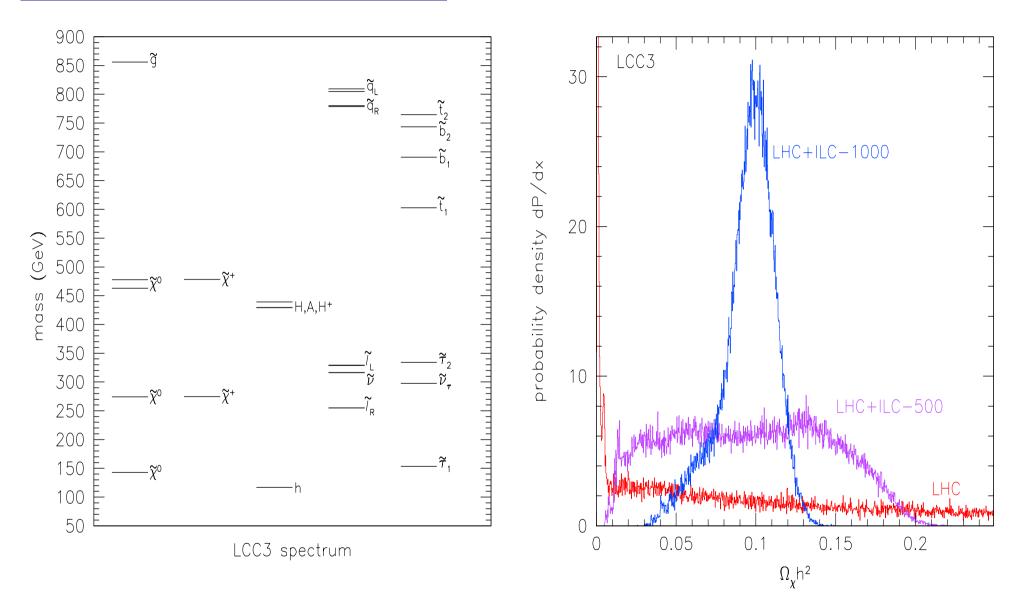
SUSY particles


 \Rightarrow Hierarchy prob., DM, $(g-2)_{\mu}$ solved, more Higgses, ... \Rightarrow Cases I, II, III

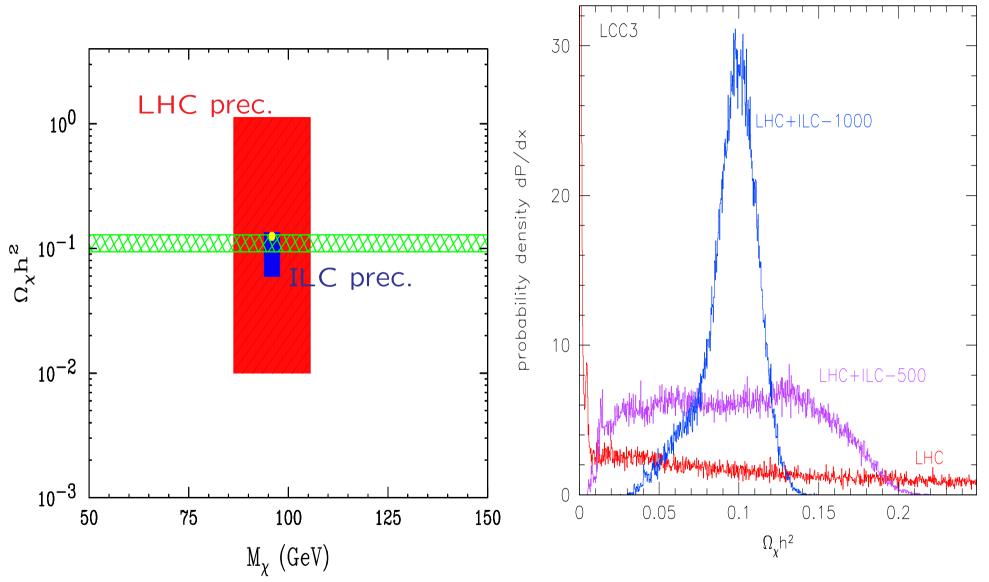
Case I: Dark Matter: is it a particle?


postulate a new particle:	
 QM and Special Relativity: 	Antimatter
 Nuclear spectra: 	Neutron
– Continuous spectrum in β decay:	Neutrino
 Nucleon-nucleon interactions: 	Pion
 Absence of lepton number violation: 	Second neutrino
– Flavour SU(3):	Ω-
– Flavour SU(3):	Quarks
– FCNC:	Charm
- CP violation:	Third generation
 Strong dynamics: 	Gluons
 Weak interactions: 	$\mathrm{W}^{\pm},\mathrm{Z}^{0}$
- Renormalizability:	Н
- Dark matter:	WIMP/axion?

 \Rightarrow "particle concept" works!

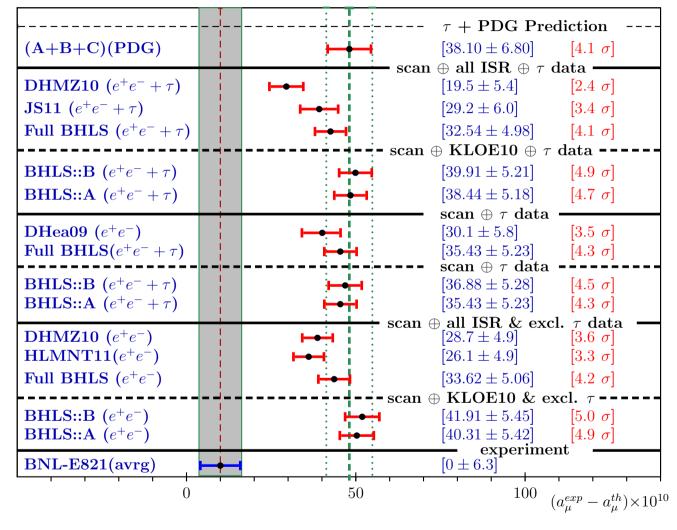

Production with a heavier particle:

Production with an initial state radiation photon:



Reconstructing DM at the ILC:

\Rightarrow DM can be reconstructed!


Reconstructing DM at the ILC:

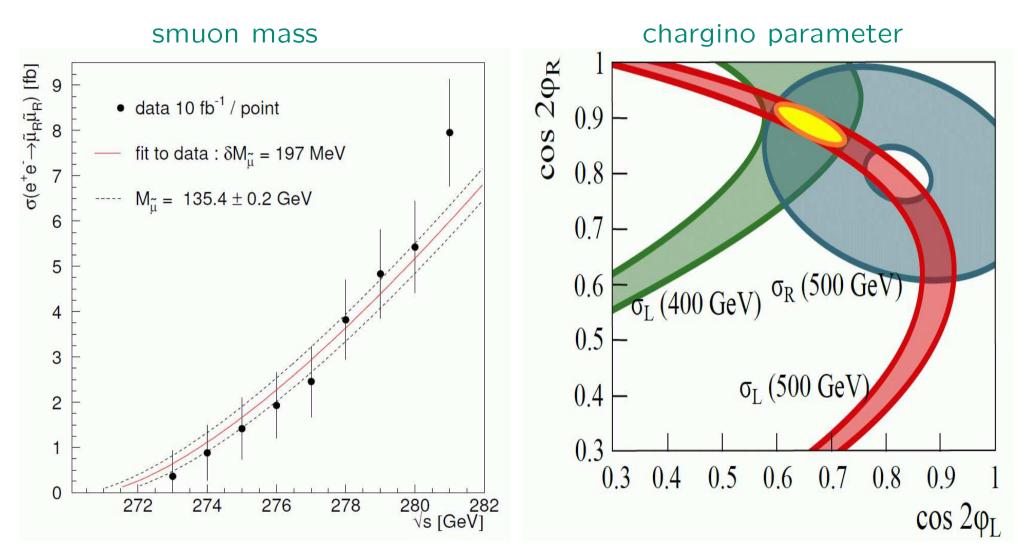
 \Rightarrow DM can be reconstructed to match astrophysical data!

Case II: Latest analysis on $(g-2)_{\mu}$:

[M. Benayoun, P. David, L. DelBuono, F. Jegerlehner '12]

 \Rightarrow more than 4 σ deviation! \Rightarrow BSM physics needed?!

BSM example: SUSY easily explains the deviation:


Feynman diagrams for MSSM 1L corrections:

- Diagrams with chargino/sneutrino exchange
- Diagrams with neutralino/smuon exchange

Experimental results require:

- not too heavy sclar muons, neutrinos
- not too heavy charginos, neutralinos
- \Rightarrow precision ILC analyses

 \Rightarrow (sub)per-cent precision possible at the ILC

Case III: A light Higgs boson below 125 GeV

We have discovered a Higgs at $\sim 125~\text{GeV}$

 \Rightarrow this need not be the lightest Higgs in the spectrum!

In principle also possible:

 $M_{h_1} < 125~{
m GeV}$ $M_{h_2} pprox 125~{
m GeV}$

Consequences:

- several Higgs bosons very light
- rich(er) Higgs phenomenology

Constraints:

- direct searches for the lightest Higgs
- direct searches for other heavier neutral Higgses
- direct searches for the charged Higgses
- flavor constraints (BR($B_s \rightarrow \mu^+ \mu^-$) etc.)

Is such a light Higgs detectable at the LHC and/or ILC?

LHC:

- $h_2 \rightarrow h_1 h_1$ strongly suppressed for $M_{h_1} \gtrsim$ 63 GeV
- so far no LHC searches for a Higgs with $M_{h_1} \lesssim 100~{
 m GeV}$ (difficult . . .)
- Possible: SUSY ightarrow SUSY h_1 , e.g. $ilde{\chi}^0_2
 ightarrow ilde{\chi}^0_1 h_1$

ILC:

- good SUSY production mode: $e^+e^- \rightarrow hA$
- good general production mode: $e^+e^- \rightarrow t\bar{t}h_1$
- \Rightarrow could be a unique opportunity for the ILC!

The LHC finds only a SM-like Higgs and nothing else

Q: Do we still need the ILC (incl. GigaZ)?

Possible scenario:

The LHC finds only a SM-like Higgs and nothing else

Q: Do we still need the ILC (incl. GigaZ)?

A: Of course!

Possible scenario:

The LHC finds only a SM-like Higgs and nothing else

Q: Do we still need the **ILC** (incl. GigaZ)?

A: Of course! Or better: even more!

The ILC+GigaZ provides:

- precise Higgs coupling measurements (ILC)
- precision observable measurements (GigaZ)
- precise top mass measurement (ILC/GigaZ)
- additional discovery potential at the $\ensuremath{\mathsf{ILC}}$

Possible scenario:

The LHC finds only a SM-like Higgs and nothing else

Q: Do we still need the **ILC** (incl. **GigaZ**)?

A: Of course! Or better: even more!

The ILC+GigaZ provides:

- precise Higgs coupling measurements (ILC)
- precision observable measurements (GigaZ)
- precise top mass measurement (ILC/GigaZ)
- additional discovery potential at the ILC
- ⇒ Only the ILC+GigaZ can find deviations from the SM predictions via the various precision measurements or new discoveries

 \Rightarrow Only the ILC+GigaZ can point towards extensions of the SM

(Not only) my personal view:

Discovery of a Higgs particle

together with top, W^{\pm} , Z, ..., DM, $(g-2)_{\mu}$, ...

is a **perfect physics case** for the ILC

(Not only) my personal view:

Discovery of a Higgs particle

together with top, W^{\pm} , Z, ..., DM, $(g-2)_{\mu}$, ...

is a **perfect physics case** for the ILC

Staged approach:

- ILC as a Higgs and top factory
 - start at lower energies to produce $\mathcal{O}\left(10^{5}\right)$ Higgs bosons
 - go to higher energies for top physics
 - go to higher energies for Higgs-top, λ_{HHH}
 - go to higher energies for TeV scale exploration
- go to other options: GigaZ, $\gamma\gamma$, ...

(Not only) my personal view:

Discovery of a Higgs particle

together with top, W^{\pm} , Z, ..., DM, $(g-2)_{\mu}$, ...

is a **perfect physics case** for the ILC

Staged approach:

- ILC as a Higgs and top factory
 - start at lower energies to produce $\mathcal{O}\left(10^{5}\right)$ Higgs bosons
 - go to higher energies for top physics
 - go to higher energies for Higgs-top, λ_{HHH}
 - go to higher energies for $\ensuremath{\mathsf{TeV}}$ scale exploration
- go to other options: GigaZ, $\gamma\gamma$, ...

\Rightarrow unique opportunity for the ILC!

 \Rightarrow Let's go ahead!

(Not only) my personal view:

Discovery of a Higgs particle

together with top, W^{\pm} , Z, ..., DM, $(g-2)_{\mu}$, ...

is a **perfect physics case** for the ILC

Staged approach:

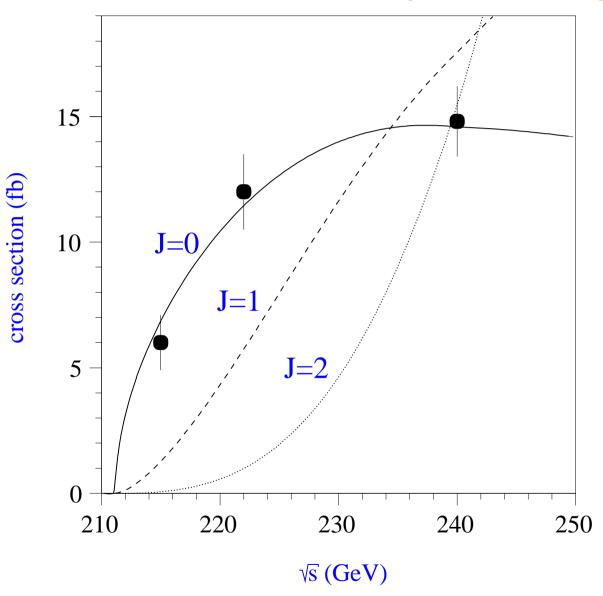
- ILC as a Higgs and top factory
 - start at lower energies to produce $\mathcal{O}\left(10^{5}\right)$ Higgs bosons
 - go to higher energies for top physics
 - go to higher energies for Higgs-top, λ_{HHH}
 - go to higher energies for $\ensuremath{\mathsf{TeV}}$ scale exploration
- go to other options: GigaZ, $\gamma\gamma$, ...

\Rightarrow unique opportunity for the ILC!

 \Rightarrow Let's go ahead!

(Spain is ready :-)

Back-up


Measurement of the Higgs boson spin

 \Rightarrow easy at the ILC

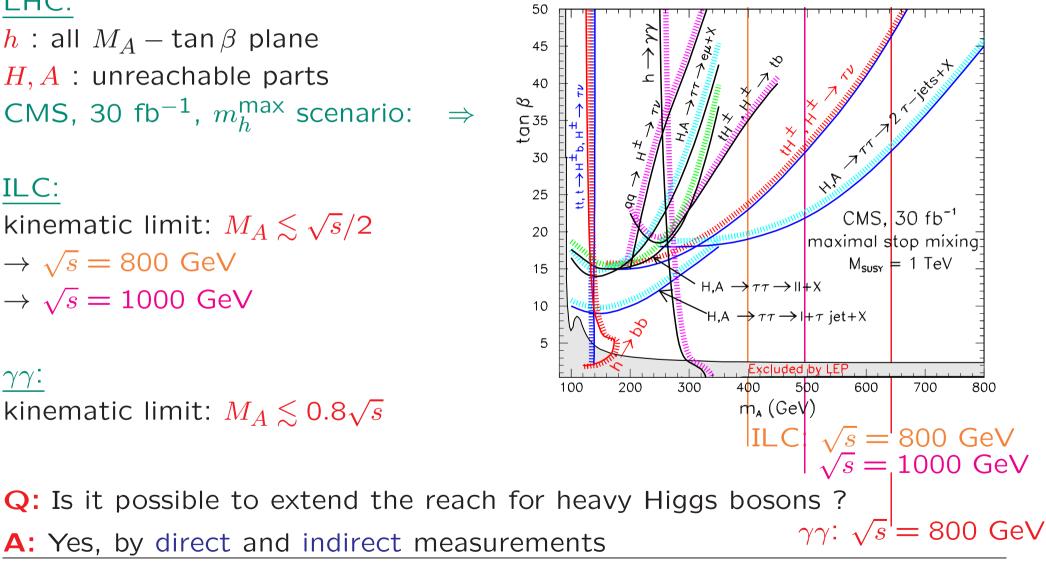
[M. Schumacher '01]

Threshold scan for $\sigma(e^+e^- \rightarrow ZX)$: $X = H \Rightarrow \sigma \sim \beta$ (β from kinematics)

 20 fb^{-1} \Rightarrow identification easy

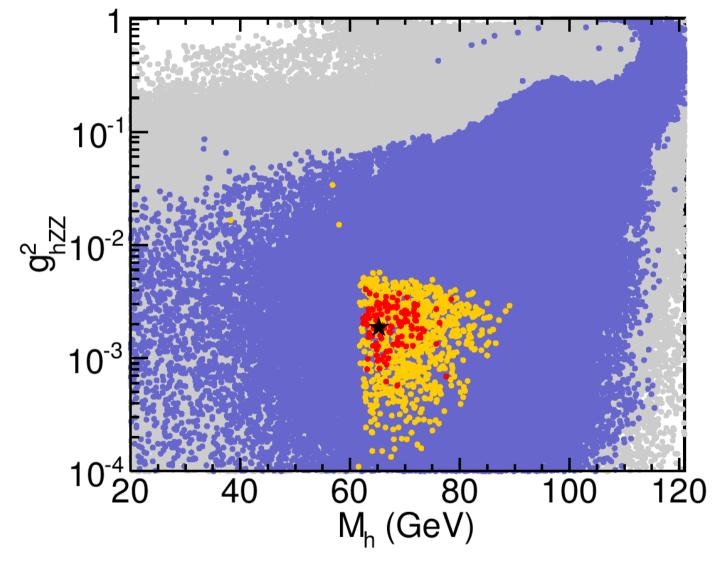
Indirect determination of unknown Higgs sector parameters

LHC/ILC reach for MSSM Higgs bosons:

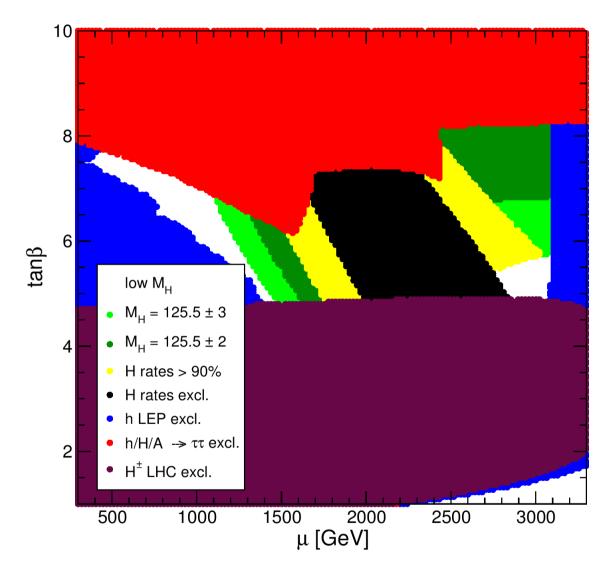

LHC:

h : all $M_A - \tan \beta$ plane H, A : unreachable parts CMS, 30 fb⁻¹, m_h^{max} scenario:

ILC:


kinematic limit: $M_A \lesssim \sqrt{s}/2$ $\rightarrow \sqrt{s} = 800 \text{ GeV}$ $\rightarrow \sqrt{s} = 1000 \text{ GeV}$

 $\gamma\gamma$: kinematic limit: $M_A \lesssim 0.8\sqrt{s}$


Where is the light Higgs in the "heavy Higgs case"?

[P. Bechtle, S.H. O. Stål, T. Stefaniak, G. Weiglein, L. Zeune '12]

 \Rightarrow low M_h values, strongly reduced couplings

low- M_H scenario:

$$\begin{split} m_t &= 173.2 \; {\rm GeV}, \\ M_A &= 110 \; {\rm GeV}, \\ M_{\rm SUSY} &= 1500 \; {\rm GeV}, \\ M_2 &= 200 \; {\rm GeV}, \\ M_2 &= 200 \; {\rm GeV}, \\ M_{\tilde{t}^{\rm OS}} &= 2.45 M_{\rm SUSY} \\ A_b &= A_\tau = A_t, \\ m_{\tilde{g}} &= 1500 \; {\rm GeV}, \\ M_{\tilde{l}_3} &= 1000 \; {\rm GeV} \; . \end{split}$$

$\Rightarrow M_H \approx 125.5$ GeV can in principle be realized