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Outline -ILD simulation-

o SIW ECAL Simulation with model
ILD detector(DBD version)

o Dead area from guard ring width

o Energy correction by direction for photon
o PCB (Printed Circuit Board) thickness

o Dead channels effect




ILD detector
-Parficle Flow AIgon’rhm(PFA)

o ILD is optimized for PFA in
hadronic jets. PFA does
calorimeter tracking and
separates each particle cluster,
and identify whether the
particle is charged, neutiral
hadron or photon.

o Particle in jet

Charged particle (65 %)—TPC
Photon (25 %) —ECAL
Neutral hadron (10 %) —HCAL




ECAL structure Iin ILD

o Sandwich calorimeter with tungsten absorber
and Silicon sensor or scintillator and MPPC for
detector.

o Tungsten absorber for short radiation length X, i
(0.35 cm), small Moliere radius(0.93 cm) and
large ratio of interaction length to radiation
length(27.4).

o For PFA, high granularity is required for
good separation of clusters. The
segmentationis 5 mm x5 mm.

o ECAL has 30 layers, equivalent to about
24X,.




About guard ring In Si sensor

o Sensor is matrix of PIN diodes.

o Guard ring prevents surface leakage current.
Thus it decreases noise and keeps the
dynamic range. It also extends depletion
layer. guard ring

dead area

Sensor for ILD.
guard ring-induce
dead area width:
0.5 mm(default
value)




SIECAL structure

o Study how thin guard
ring(=dead areaq) is required.

o We will have guard ring effect
particularly in vertical
direction to the beam pipe.
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Energy correction for photon

o Energy decreases in
centfral guard ring,
alveolar structure,
module end and
barrel end cap gap.

o Direction resolution
for 8 is 3.3 104 rad.
It's sufficient to give
a correction by 6.

o Upper graph can be
fitted by linear and
Gaussian functions.
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Energy correction function

o These functions are obtained by fitting10 GeV
photon energy measurement.

o Larger guard ring has larger effect.
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Jet Energy Resolution (JER)
evaluation

o We use “I—uu/dd/ss” events

350

o Z decayed af rest, avoid 3
barrel/endcap overlap region. -

o Tails F
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o Confusion is significant
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o RMS over-emphasizes the tails I R B T o

o RMS90 /
o Defined as the RMS in the RMS90 is calculated
smallest range of using events in this
reconstructed energy which 90 % area

contains 90 % of the events




JER with different guard ring width

the benchmark resolution for good separation
between W and Z boson hadronic decay

o JER Incregses as | guard ring width dependence for barrel | \
guard ring width = “F
) 2300
INncrease. Zas

180GeV jet with correction
45.5GeV jet without comection

o About 6 % difference
between O mm and 2
mm.
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PCB (Printed Circuit Board)
thickness effect

o As we have many channels in ECAL,
we put PCB in each layer to combine
signals (serialize) and reduce number
of readout cables.

B o Thick PCB will increase lateral shower
size. So thin PCB maybe preferred.

ips and bonded wires
inside the PCB

o However, too thin PCB is
technologically difficult and
expensive.




JER dependence on PCB thickness

) the benchmark resolution for good separation
0 0.4 mm increase between W and Z boson hadronic decay
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Dead channels effect oys. chen .

olf a few % dead cell is OK, we can increase
yield for Si sensor and reduce cost.

o Some of the readout chip may broken down
during construction or experiment.

o How to study dead channel and chip effect:

Clustering etc..

Digitization

Mokka Marlin




JER dependence
on dead pixels / chips fraction

Dead pixels Yol l[J3M By S. Chen
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o Small effect under 15 % dead pixels fraction.

> ECAL resolution is sensitive to dead channels but JER is
basically limited by HCAL resolution.

» Effective granularity is sufficient for PFA.
o As dead chip fraction increases, JER increases linearly.




Modeling of photon energy resolution
dependence on dead fraction (¢)

b1(¢)
o E = (D \1/— const. ® stochastic
» Const. term is from non-uniformity (= dead fraction)
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o Most of photons in the jets have low E (3 GeV)
—Little contribution by const. tferm(=dead fraction)




Summary

o SIW ECAL for ILD optimization of guard ring width,
PCB thickness and dead pixel(chip) was studied.

o Jet energy resolution(JER) increases as guard ring
width increase. The difference between 0 mm
and 2 mm is about 6 %.

o With different PCB thickness, no significant JER
change was seen.

o 15 % of dead channels have very little effect on
JER.

o JER increases as dead chip fraction increase.
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Dead pixel rate — Number of ECAL hi

# of
ECAQIEOOhiTS Dead rate dep. on number of hits in a jet
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DR dep. of resolution w/ single photon events
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Photon Energy fraction in a jet

Energy of photon pfo in 91GeV jet evt Energy of photon pfo in 200GeV jet evt
h h
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Energy fraction from photon PFOs Energy fraction from photon PFOs

M 20%~30% on average (large fluctuation by events)




Energy of a photon pfo in a je

Energy of photon pfo in 91GeV jets (1000evt averaged)

Energy of photon pfo in 200GeV jets (1000evt averaged)

Energy of a photon PFO
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Energy of a photon PFO

l Mostly under 2~3GeV

Soft photon PFOs give the dominant contribution to neutral energy in a jet

The energy resolution is determined mainly by stochastic term




Simple estimation of JER Assume a typical 45 GeV jet

Ny = 9, Nh=2,
E,=1.4GeV, E, = 3.0GeV
(See later slides)

ij\/Ncrz—l—N 02 + Ny o}

ap ~ 0.55 Av EH[GEV}

~ \/Nﬂrcr?r + Ny o}

(pixel)  (—fit with plots in page7—) (chip)
B bi(¢) bo(€) = 1.6 (1 + 126) (%)  bo(€) = 1.6 (1 + 28¢) (%)
oy = Ey | B5(8) + ( ) 0
J vE, 17.4 17.4

e bi(§) = NI (%) bi(§) = ﬁ (%)

5% dead | 0 /E (%) | 0j/Ej(%) 20% dead | 0 ,/E (%) | 0j/E; (%)
pIX 156 3.50 piX 18.6 3.70
chip 16.5 3.55 chip 24.3 413

10% dead | 0 ,/E (%) | 0;/E; (%) 30% dead | 0 ,/E (%) | 0j/E; (%)
pix 16.5 3.55 piX 21.2 3.89
chip 18.7 3.70 chip 31.1 4.73

Error bar of JER in simulation (1000 events)

~ 0.2-0.3 % for each point




