

Gluing studies and process

Applied to silicon pad detectors within SiW Ecal activities at LPNHE Paris

Augustin J-E., David J., Ghislain P., Jauffret A. (intern), Lacour D., Lavergne L., Vincent D.

Overview

- Objectives
- Current gluing status
- Improvements
- Quality insurance
- Work in progress
- Next steps
- Conclusion

LPNHE

Objectives

 Short-term: to glue one silicon sensor per PCB with a conductive glue for the test beam prototypes

 mid-term: to develop a fully automated process to position, align and glue 4 sensors on a PCB

long-term: to apply this process to mass production

S

Current gluing status

- The parameters of the gluing robot have been optimized to glue a silicon sensor (18x18 pads) on a PCB
- The constraints on the PCB geometry have been identified:
 - Flatness
 - Parallelism of the edges
 - Uniform height of the ASIC soldered on the board

Current gluing status

- The total number of sensors glued with the robot: 9
- The leakage currents measured before and after the gluing process are similar.
- Some sensors were used for test beam: July 2012, February 2013, July 2013

IV-curve measured at LLR on sensors before gluing

IV-curve measured at LAL on slabs

Improvements

- Use of specific pumps for dry and clean vacuum
- Careful cleaning of PCB
- New positioning of the glue dots for the external pads, to avoid short-circuits.

Quality insurance

- Task flow completed
- Reception and gluing procedures written
- Wafer, PCB and ASU transportation improved (dedicated boxes)
- Work in a clean room (ISO8) planned

Px : Procédure à mettre en place et à documenter

F : fiche de sulvi du wafer

Gluing procedure

LPNHE

Work in progress

- We are developing a software (Labview) for the gluing robot
- We are assembling the second robot for positioning, alignment, and handling
- We are preparing the clean room to host both robots

In parallel, we continue to glue sensors for the test beam prototype (July 2013)

Next steps

- We need to develop the software for automated positioning and alignment
- We plan to combine both gluing and positioning robots
- The robots will be moved and installed in the clean room
- The goal is to glue 4 sensors on the same PCB

Positioning robot

Conclusion

 The automated gluing process is now functional for the beam tests prototypes, reproducible and controlled (for one sensor per PCB).

The next step is to glue 4 sensors on a PCB, using automated positioning

 The quality insurance approach must be continued and improved.

- time of deposit: 0.5 s
- time of shift: <0.5 s
- Pressure of dispenser: 1-2 bar
- Quantity of deposited glue (dot size):120 μm thick
- Time of polymerization: 24h
- Temperature of polymerization: 40°C
- resistivity after heat polymerization: less than 20 m Ω
- Resistance to strain, peeling and shear stress: checked
- Time for one sensor ~20 minutes
- Predicted time for 4 sensors, using 2 syringes ~40-50 minutes