



# Test beam analysis of SiW ECAL physics prototype in 2011 FNAL

Shion Chen, Daniel Jeans, The University of Tokyo

Calice Meeting@Annecy 9 Sep 2013

# Outline

Study of response of Calice SiW Physics Prototype to **positrons** (4eV~32GeV)

May 2011@FNAL

Introduction

Physics prototype, Setup, Beam

#### ECAL performance study

Linearity, Energy resolution, gap correction

#### Pandora performance study with the TB data Separation power of 2 overlapped clusters



1

Structure 1.4

Structure 2.8

(2×1.4mm of W plates) (1.4mm of W plates)

# **TB** setup

#### **Other detectors**

Trigger cerencov (not used in this analysis) in the front DHCAL behind

 $\Rightarrow$  hit number information is available !

#### Beam

Pion dominant (Muon are available with a blocker) Beam profile - flat along y direction

<u>Momentum spread:</u> 2.7±0.3 % for 2-4GeV 2.3±0.3 % for 8-32GeV

#### **Data selection**

Based on MIP, noise rate Runs with too small statistics are also discarded



Looking for positrons out of the sea of pions...

# **Positron Event selection**



MIP peak of muons / some lucky pions

#### **Energy deposit in ECAL vs Hits in HCAL**



pion stopped (fully interacting) in ECAL  $\Rightarrow$  Large part of energy is likely to be taken by  $\pi_0$  component. (Anyway EM)



#### **Additional selection**

Moliere radius < 30mm (cut noise / multi-shower events)</li>

(definition) 90% coverage of hit energy around the barycenter If true positron, Moliere raduis ~20mm

· Removed events with an entire wafer firing (noise)

# **ECAL Performance**

- Linearity
- Energy resolution

#### Fit the energy distribution of the selected sample

Fitting range: [mean -  $2\sigma$  + 1.5\*|skewness|\* $\sigma$ , mean +2 $\sigma$ ] Lessen the influence of negative tail







# Gap events treatment



-18mm < xbar < 28mm -25mm < ybar < 25mm

Energy vs xbar (MIP) 22 9000 20 Energy 18 8500 16 8000 14 12 7500 10 7000 6500 25% 6000 -80 -60 -40 40 60 80 -20 0 20 xbar (mm) window of "cut"

<u>barycenter</u>

$$(\bar{x}, \bar{y}) = \left(\sum_{i} E_i x_i, \sum_{i} E_i y_i\right) / \sum_{i} E_i$$

Ei : hit energy xi, yi: x/y position of hit i

#### **(2)** Correction $\rightarrow$ Cut

- Area based correction
- Fitting correction

# **Resolution / Linearity (Cut)**



- Non-linearity:within +1.0% -1.5%
- Resolution (Const.) 2.59% (Stoch.) 18.0%



# Area based correction



Energy (MIP)

# **Result** with area-based correction



(Const.) 3.07% (2.59%) (Stoch.) 17.6% (18.3%)



# +Fitting correction

#### **Correction function**



# **Result** with area+fitting correction



# **Combine runs / comparison with other TBs**

#### Subtract the contribution from beam spread

$$\frac{\sigma}{E} = \sqrt{\left(\frac{\sigma_{\text{meas}}}{E}\right)^2 + \left(\frac{\sigma_{\text{meas}}}{P_{\text{beam}}}\right)^2}$$

<u>σ/P<sub>beam</sub>:</u> 2.7±0.3 % for 2-4GeV 2.3±0.3 % for 8-32GeV



Non-linearity: ~1% (~0.6% if 32 GeV is excluded)

```
    Resolution
    1.58±0.14 (const.) + 17.7±0.14 (Stoch.) (%)
```

Resolution looks a bit high. Need more investigation

#### Pandora performance study with the TB data

Study the separation power of Pandora number of PFOs, PFO energy vs shower distance

[Motivation] Separation of 2 close photons is important for tau ID /  $\pi_0$  reco.

# Map TB events (Calice prototype) onto the ILD model z axis (@CALICE) → y axis (@ILD) Tune cell size 5mm→10mm Shower tilt is not considered at this moment

Overlap 2 event from 2 different runs
 Overlapped cells → summed energy
 No track → disguise as photon clusters





overlap!



Throw to Pandora



#### **Overlap study** (16GeV+12GeV)

Event selection
Cuts applied in the ECAL analysis



#### Overlap study (16GeV+12GeV)

Event selection
 Cuts applied in the ECAL analysis
 && E > 0.5\*(E<sub>beam,1</sub> + E<sub>beam,2</sub>)



#### Overlap study (16GeV+12GeV)



#### **Overlap study (16GeV+12GeV)**



#### **Overlap study (various combination)**

Probability to have only I PFO in the end



Critical points are around 30mm~50mm

Pandora seems to prefer to attach small cluster to larger one

Need cross check with MC

#### Average number of PFA we have in the end



# **Summary and Outlook**

#### Test beam of SiW Physics prototype in FNAL 2011 is analyzed

#### Performance

Non-linearity: +0.6% - 1.2%

Energy resolution:  $\sigma/E = 1.58\pm0.1$  (const.) + 17.7±0.1 (Stoch.) (%)

#### Pandora performance study with the TB data

In TB data, SiW ECAL + pandora can separate EM showers @ ~50mm

Simulation study for comparison is planned

Further investigation on if separation can be improved is ongoing

# Backup

# **MIP check**

Run removed

22, 23, 24, 27, 28, 51, 59, 60: Too little statistic 71: Strange in every aspect

Fit with only Landau (G-convoluted sometimes explode)





MPV of MIP energy deposit distribution





# Odd / even layers correction

The sampling ration is different in odd / even layers Even layers always have more matter before



#### Energy deposit in odd layer run:630037

# PCB /supporting structure

#### (CERN 2006)

notation of "odd/even" is opposite? first lay -> layer 0 -> even?



#### Fit gap position/width (no correction)



### Fit gap position/width (w/ area-based cor.)

