Test of Power Pulsing with the HBU-LED System

Shion Chen

DESY FLC AHCAL group Calice Meeting 10. Sep. 2013

Challenges of Engineering prototype

Front-end electronics readout
 Integrated design of active layer and electronics

induce another problem

Heat

Power pulsing!!

WLS guide

Concept of AHCAL Power pulsing

(B. Hermberg, M. Reinecke, M. Terwort (2012))

- ILC beam bunch structure: Ims beam-on / 199ms off
- Turn off the power not in use
- The power of SPIROC is delivered by 4 different power supplies
- pw_a, pw_adc, pw_d, p_dac:

Power control signal for analog/ADC/digital/others part of SPIROCs

Activation time T_on: How short can we make it? / what effect will limit T_on?

Previous study with charge injection with IHBU

by B. Hermberg

- Shoot charge pulse directly into SPIROCs Checked the output signal
- Amplitude drops in the beginning
- Need ~Ims to stabilize
 Many discussions, but not understood
 Measurements with different setup might give clues
- Data quality after Ims looks nice Test with more realistic setup
- \Rightarrow Scintillator + SiPM system / multi-HBUs !!

Setup

Calibration LED on each channel

(1) LED light \rightarrow Scintillator \rightarrow SiPM raw signal

- ② Goes to ASICs via wires (same as charge injection)
- ③ ASICs process trigger, shaping, digitizing etc.
- ④ Stored in the memory in ASICs
- (5) When one memory of channel becomes full, signals are readout to DIF board then outside

Setup

Calibration LED on each channel

- IHBU setup
- 3HBU setup
- 6HBU setup (ILD model)

Analysis

- \cdot Shape
- Amplitude, Gain
- External trigger mode

Clocked by DIF

Varying T_on, trigger distance, number of HBUs (1,3)

1**HBU - noPP mode**

T_on: | | µs trigger distance: 60µs

(Chip 213, channel 10)

1HBU - PP mode

T_on: | | µs trigger distance: 60µs

Crazy shortly after power-on, gradually come to normal

Gain Peak distance between pedestal and I.p.e

Gain IHBU

Gain drops restore with T~Ims

(noPP) (PP) T_on: I I µs, trigger distance 330µs (PP) T_on: 22µs, trigger distance 63µs (PP) T_on: 22µs, trigger distance 330µs

Gain ratio of w/ to w/o PP mode

Gain IHBU

Gain drops restore with T~Ims

Comparison with charge injection

Consistent behavior

Charge injection

3HBU - PP mode

T_on: 24µs trigger distance: 190µs

(Chip 213, channel 10)

signal quality is fine after the duration

3ms after power-on

Gain 3HBU setup

Discussion

Why does gain drop?

Not the problem of SiPM
 Same effect (quantitatively) in charge injection
 Pre-amp gain looks actually drops

■ Stabilization time depends on #HBUs
 ⇒ At least not only the problem of SPIROCs

The power supply to the analog part of the SPIROC (VDDA) is directly checked via oscilloscope.

IHBU:

VDDA shows a drop (~25mV) after poweron. T~1ms

3HBU:
 Voltage drop ~100mV, τ~2ms

Clue? \rightarrow VDDA should not affect gain

3HBU

Summary

- Power pulsing measurement with HBU-LED setup is on going
- Good quality data can be acquired with power pulsing operation after 1~2ms, even with 3HBU setup
- Gain drop is confirmed quite consistently with the result of charge injection study
- But the reason is still not clear, need further investigation

Outlook

- Further analysis on gain / pedestal
- 6HBU setups measurement are ongoing

Acknowledgement

Many thanks for Katja, Mathias, Ali, Coralie, Oskar

Thank you for the attention

Backup

Amplitude

1HBU amplitude curve

19

Comparison with IHBU

Need more time to stabilized (~2ms)

Geometrical Optimization in terms of PFA

Pedesta ADC dist. of channels without scintillator/SiPM attached

red: no PP blue: with PP

SPIROC2b

IHBU noPP

chip:214 chn7

3HBU noPP amplitude curve

26

RC component between VDDA - Preamp

 $\tau = R \cdot C$ VI=V2 (off) VI=V2-0.2V (on)

Gain drops in charge injection study

10Ω

Gain drops in charge injection study

Power consumption estimation in current chip design

time window	I_{VDDA} [mA]	I_{VDDD} [mA]	time [ms]
t1	498.47	30.33	0.9
t2	519.47	37.56	0.1
t3	245.20	36.79	3.2
t4	0.71	29.31	150
t5	0.56	0.01	45.8

TABLE 1: Table with the different currents and times.

Power	P_{VDDA} [mW]	P_{VDDD} [mW]	P [mW]
P1	7.40	0.45	-
P2	0.86	0.06	-
P3	12.95	1.94	-
P4	1.76	72.54	-
P5	0.42	$7.56 \cdot 10^{-3}$	-
P_{VDAC}	-	-	0.05
P_{VRef}	_	_	1.89
$\sum \mathbf{P}$	$100.32 \mathrm{~mW}$		

TABLE 2: Table with the different power consumptions.