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■ Front-end electronics readout
Integrated design of active layer and 
electronics

induce another problem

■ Heat

Challenges of Engineering prototype 

cooling system?

OMG...

Power pulsing!!

WLS guide

SiPM

Mirror
Scintillator tile 

HBU
 (HCAL Base Unit)

SPIROC2b
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Figure 1: Sketch of the power cycling scheme.

3 Measurements

The chronological order of the starting point of the different power components

are controlled within the Detector Interface (DIF). Just the activation time can be

adjusted outside. By varying the activation time of the pw_a, pw_d and pw_dac

power supplies and analyzing the output of the memory cells a first estimation

for the best activation time is possible. An ideal time is reached if T_on is

as small as possible without affecting the measurements. For the experimental

setup one channel is connected to a pulse generator, which injects a well defined

amount of charge. For these measurements we chose 3 pC. To compare the results

a measurement without power cycling is done. The DAQ program offers two

possibilities to vary the time. The first is to steer the activation time itself and

the other is to vary the time between the external triggers that are measured.

Both ways have been used to cross-check the results. A sketch in Fig. 2 shows

more details of the measurement.

4 Preamplifier

The distance between the starting point of the measurement (start_acq) and

the first trigger is determined in the DIF-firmware and has a constant value of

8 µs. The ASIC always interprets the first trigger as a zero, which is a well known

bug of the SPIROC2b. So for the measurements the first memory cell is not taken

into account. The activation time has been estimated to be 20 µs. Comparing
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Concept of AHCAL Power pulsing

■ ILC beam bunch structure: 1ms beam-on / 199ms off 

■ Turn off the power not in use
・The power of SPIROC is delivered by 4 different power supplies
・pw_a, pw_adc, pw_d, p_dac: 
   Power control signal for analog/ADC/digital/others part of SPIROCs

■ Activation time T_on: How short can we make it? / what effect will limit T_on?

(B. Hermberg, M. Reinecke, M.Terwort  (2012))

4 power supplies 
to SPIROCs
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by B. Hermberg

Previous study with charge injection with 1HBU

■ Shoot charge pulse directly into SPIROCs
   Checked the output signal

■ Amplitude drops in the beginning 

■ Need ~1ms to stabilize
   Many discussions, but not understood
   Measurements with different setup might give clues

■ Data quality after 1ms looks nice
   Test with more realistic setup 

⇒ Scintillator + SiPM system / multi-HBUs !!
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Figure 3: Signal in different memory cells. The red curves are the fits of the
entries in the different memory cells measured without power cycling
and the black curves are the fits of the entries in the different memory
cells measured with power cycling.

5 Time behavior

To analyze the time behavior of the output signal from the SPIROC2b first the

activation time is varied and in a second run the trigger distances. The ratios of

the measured mean amplitudes with and without power cycling for every memory

cell are shown in Fig. 6. The time behavior of the means of each memory cell

depending on the activation time is presented in Fig. 6a (a fixed trigger time

distance of 40.968 µs is chosen), each curve represents one activation time and

every mark displayed one memory cell. The curves always start with memory

cell 1. The results with a constant activation time of 11 µs, but varying the time

distances of the triggers are shown in Fig. 6b and Fig. 6c. Each curve is measured
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red: no PP
black: with PP
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Figure 7: Measurement with the default 5 Ω setup. Each curve represents one
measurement with one specific adjustment (activation time, trigger
time distance), every mark corresponds to one memory cell. Picture
a) has a constant trigger time distance of 40.968 µs. Picture b) and c)
has a constant activation time of 11 µs.

measurement. To see a direct influence of the R-C element the analysis of the

setup without an R-C element is needed. But considering the histograms of the

memory cells shows that the entries of the histogram are not following a Gaussian

distribution anymore. The results are shown in Fig. 8. A faster rising of the ratios

is expected. One reason could be the common mode noise, because without an

R-C element the common mode noise gets the full impact on the electronic.

To compare the results of the 5 Ω and 10 Ω setup directly, one activation time

is chosen (11 µs), so the difference in the ratios as function of time can be seen

(Fig. 9). A faster rising of the ratios in the 5 Ω setup is visible. But due to halving

the time constant of the 10 Ω setup a much faster rising in the ratios with the

8

T_on
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Setup

Calibration LED on each channel 

① LED light → Scintillator → SiPM raw signal

② Goes to ASICs via wires

③ ASICs process trigger, shaping, digitizing etc.

④ Stored in the memory in ASICs

⑤ When one memory of channel becomes full,

    signals are readout to DIF board then outside

DIF

①
③

④

⑤

②

(same as charge injection)
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Setup

Calibration LED on each channel 

■ Analysis
   ・Shape

   ・Amplitude, Gain

■ External trigger mode

   Clocked by DIF

■ Varying T_on, trigger distance, 
number of HBUs (1,3) 

■ 1HBU setup
■ 3HBU setup
■ 6HBU setup (ILD model)

 1st t
r.

 2nd tr.
 3rd tr.

Start aq.

Trigger

Time

Activation time
T_on

Trigger distance

8µs

Power-on
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Crazy shortly after power-on, 
gradually come to normal

negative tail?
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Gain Peak distance between pedestal and 1.p.e 
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(c)

Figure 6: Measurement with the default 10 Ω setup. Each curve represents one
measurement with one specific adjustment (activation time, trigger
time distance), every mark corresponds to one memory cell. Picture
a) has a constant trigger time distance of 40.968 µs. Picture b) and c)
has a constant activation time of 11 µs.

5.1 Investigation of the time behavior

There is a difference in the output of the memory cells caused by the R-C

element. To analyze this in more detail the default setup is changed from 10 Ω

and 33 µF to 5 Ω and 33 µF. This should halve the time constant and the output

of the memory cell should reach nearly the same output as without power cycling

much faster. To do a cross check a measurement without this R-C element is

performed, to compare the results. The results for the 5 Ω run are presented in

Fig. 7.

The results for the 5 Ω measurement are similar as the results for the 10 Ω
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(c)

Figure 6: Measurement with the default 10 Ω setup. Each curve represents one
measurement with one specific adjustment (activation time, trigger
time distance), every mark corresponds to one memory cell. Picture
a) has a constant trigger time distance of 40.968 µs. Picture b) and c)
has a constant activation time of 11 µs.

5.1 Investigation of the time behavior

There is a difference in the output of the memory cells caused by the R-C

element. To analyze this in more detail the default setup is changed from 10 Ω

and 33 µF to 5 Ω and 33 µF. This should halve the time constant and the output

of the memory cell should reach nearly the same output as without power cycling

much faster. To do a cross check a measurement without this R-C element is

performed, to compare the results. The results for the 5 Ω run are presented in

Fig. 7.

The results for the 5 Ω measurement are similar as the results for the 10 Ω
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(PP) T_on: 11µs, trigger distance  330µs
(PP) T_on: 22µs, trigger distance  63µs
(PP) T_on: 22µs, trigger distance  330µs 

Consistent behavior
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Gain  3HBU setup
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1HBUDiscussion

Power control

Start aq. 

VDDA
1ms

Why does gain drop?

■ Not the problem of SiPM
Same effect (quantitatively) in charge injection
Pre-amp gain looks actually drops

■ Stabilization time depends on #HBUs
⇒ At least not only the problem of SPIROCs

The power supply to the analog part of the 
SPIROC (VDDA) is directly checked via 
oscilloscope.

■ 1HBU:  
VDDA shows a drop (~25mV) after power-
on. τ~1ms

■ 3HBU: 
Voltage drop ~100mV,  τ~2ms

Clue?
→VDDA should not affect gain

3HBU

1ms
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Summary

■ Power pulsing measurement with HBU-LED setup is on going 

■ Good quality data can be acquired with power pulsing operation after 1~2ms, even with 3HBU setup

■ Gain drop is confirmed quite consistently with the result of charge injection study

■ But the reason is still not clear, need further investigation

Outlook
■ Further analysis on gain / pedestal
  
■ 6HBU setups measurement are ongoing

Acknowledgement
Many thanks for Katja, Mathias,  Ali, Coralie, Oskar
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Amplitude
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Geometrical Optimization in terms of PFA
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Figure 11: Jet energy resolutions (rms90) for the LDCPrime as a function of the thickness (normal incidence) of the
HCAL. In addition, the ECAL contributes 0.8 λI . Results are shown with (solid markers) and without (open markers)
taking into account energy depositions in the muon chambers. All results are based on Z → uu, dd, ss with generated
polar angle in the barrel region of the detector, | cos θqq | < 0.7.
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Figure 12: a) the dependence of the jet energy resolution (rms90) on the magnetic field for a fixed ECAL inner radius.
b) the dependence of the jet energy resolution (rms90) on the ECAL inner radius a fixed value of the magnetic field. The
resolutions are obtained from Z→ uu, dd, ss decays at rest. The errors shown are statistical only.
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Figure 13: a) the dependence of the jet energy resolution (rms90) on the ECAL transverse segmentation (Silicon pixel
size) in the LDCPrime model. b) the dependence of the jet energy resolution (rms90) on the HCAL transverse segmenta-
tion (scintillator tile size) in the LDCPrime model. The resolutions are obtained from Z → uu, dd, ss decays at rest. The
errors shown are statistical only.

35

22



Pedestal red: no PP
blue: with PPADC dist. of channels without scintillator/SiPM attached
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Figure 4: Scheme of the R-C element of the preamplifier.
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Figure 5: Correlation of the linear behavior between the channels. a) Without
the R-C element and b) with R-C element.

with a fixed trigger distance and one can assign a time to each memory cell

all given by the trigger distance and every mark stands for one memory cell

beginning with memory cell 1. Figures 6a and 6b show a very similar behavior,

so it is concluded that the output of the memory cells are just depending on the

activation time. Here it is noticed that the ratio approaches 1 (98 %) after ≈ 1 ms,

so the output of the memory cells with power cycling needs a long time to reach

the same output as without power cycling. The electronics need roughly 1 ms to

reach the full performance (98 %).

6

RC component between VDDA - Preamp
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Figure 6: Measurement with the default 10 Ω setup. Each curve represents one
measurement with one specific adjustment (activation time, trigger
time distance), every mark corresponds to one memory cell. Picture
a) has a constant trigger time distance of 40.968 µs. Picture b) and c)
has a constant activation time of 11 µs.

5.1 Investigation of the time behavior

There is a difference in the output of the memory cells caused by the R-C

element. To analyze this in more detail the default setup is changed from 10 Ω

and 33 µF to 5 Ω and 33 µF. This should halve the time constant and the output

of the memory cell should reach nearly the same output as without power cycling

much faster. To do a cross check a measurement without this R-C element is

performed, to compare the results. The results for the 5 Ω run are presented in

Fig. 7.

The results for the 5 Ω measurement are similar as the results for the 10 Ω
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Figure 6: Measurement with the default 10 Ω setup. Each curve represents one
measurement with one specific adjustment (activation time, trigger
time distance), every mark corresponds to one memory cell. Picture
a) has a constant trigger time distance of 40.968 µs. Picture b) and c)
has a constant activation time of 11 µs.

5.1 Investigation of the time behavior

There is a difference in the output of the memory cells caused by the R-C

element. To analyze this in more detail the default setup is changed from 10 Ω

and 33 µF to 5 Ω and 33 µF. This should halve the time constant and the output

of the memory cell should reach nearly the same output as without power cycling

much faster. To do a cross check a measurement without this R-C element is

performed, to compare the results. The results for the 5 Ω run are presented in

Fig. 7.

The results for the 5 Ω measurement are similar as the results for the 10 Ω
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Figure 7: Measurement with the default 5 Ω setup. Each curve represents one
measurement with one specific adjustment (activation time, trigger
time distance), every mark corresponds to one memory cell. Picture
a) has a constant trigger time distance of 40.968 µs. Picture b) and c)
has a constant activation time of 11 µs.

measurement. To see a direct influence of the R-C element the analysis of the

setup without an R-C element is needed. But considering the histograms of the

memory cells shows that the entries of the histogram are not following a Gaussian

distribution anymore. The results are shown in Fig. 8. A faster rising of the ratios

is expected. One reason could be the common mode noise, because without an

R-C element the common mode noise gets the full impact on the electronic.

To compare the results of the 5 Ω and 10 Ω setup directly, one activation time

is chosen (11 µs), so the difference in the ratios as function of time can be seen

(Fig. 9). A faster rising of the ratios in the 5 Ω setup is visible. But due to halving

the time constant of the 10 Ω setup a much faster rising in the ratios with the
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Figure 7: Measurement with the default 5 Ω setup. Each curve represents one
measurement with one specific adjustment (activation time, trigger
time distance), every mark corresponds to one memory cell. Picture
a) has a constant trigger time distance of 40.968 µs. Picture b) and c)
has a constant activation time of 11 µs.

measurement. To see a direct influence of the R-C element the analysis of the

setup without an R-C element is needed. But considering the histograms of the

memory cells shows that the entries of the histogram are not following a Gaussian

distribution anymore. The results are shown in Fig. 8. A faster rising of the ratios

is expected. One reason could be the common mode noise, because without an

R-C element the common mode noise gets the full impact on the electronic.

To compare the results of the 5 Ω and 10 Ω setup directly, one activation time

is chosen (11 µs), so the difference in the ratios as function of time can be seen

(Fig. 9). A faster rising of the ratios in the 5 Ω setup is visible. But due to halving

the time constant of the 10 Ω setup a much faster rising in the ratios with the
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Gain drops in charge injection study
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Figure 9: Comparison of the 5 Ω and 10 Ω setup. Both curves have the same
specific adjustment (activation time and trigger time distance) with
different resistors for the R-C element.

the 5 Ω, 10 Ω and 0 Ω setup (Fig. 11). The common mode noise leads to an

increased width of the noise distribution. This explains the bad result of the

0 Ω measurement. Every mark stands for one memory cell, which is filled after a

certain time, given by the trigger distance.

7 Power consumption

In ILC mode the power cycling is linked to the train structure to reduce the

power consumption and avoid too much heating within the detector. To achieve

that the power consumption should be limited to ≈ 25 µW/channel (without the

power consumption of the SiPMs). A time sketch for the certain power supply is

displayed in Fig. 12.

The power consumption is determined for each time window. In every time

window several power supplies work together.

t displayed the time in which the electric work is done. With

P =
U · I · ∆t

T
(1)

the power consumption for every time window can be determined. T stands for

the length of a bunch train (200 ms) and ∆ t is the length of the time window.

So the power consumption is :
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Figure 12: Sketch of the time structure subdivided into the parts with different
power consumption.

Pall =
n∑

i=0

Pi = P1 + P2 + P3 + P4 + P5. (2)

P1 is the power consumption measured in t1, P2 in t2, P3 in t3, P4 in t4 and

P5 in t5.

On the extender board are the VDDA (voltage drain drain analog) and VDDD

(voltage drain drain digital) supplies. With this supplies the different currents

(IV DDA and IV DDD) of the board can be measured. These supplies have a voltage

of 3.3 V. Every single power consumption has fractions of the VDDA and VDDD

supply :

P = PV DDA + PV DDD. (3)

Table 1 shows the measured currents.

With the currents, the time table and the according voltage a calculation of the

power consumption is possible. Additionally during the whole power cycling the

12

time window IV DDA [mA] IV DDD [mA] time [ms]
t1 498.47 30.33 0.9
t2 519.47 37.56 0.1
t3 245.20 36.79 3.2
t4 0.71 29.31 150
t5 0.56 0.01 45.8

Table 1: Table with the different currents and times.

Power PV DDA [mW] PV DDD [mW] P [mW]
P1 7.40 0.45 -
P2 0.86 0.06 -
P3 12.95 1.94 -
P4 1.76 72.54 -
P5 0.42 7.56·10−3 -

PV DAC - - 0.05
PV Ref - - 1.89
∑

P 100.32 mW

Table 2: Table with the different power consumptions.

ASIC is supplied by the VDAC and the VRef power supply. The VDAC power

supply delivers 0.01 mA at 5 V and the VRef supplies 0.42 mA with 4.5 V. This

power has also to be taken into account, see Tab. 2.

The total power consumption is Pall= 100.32 mW. This is the power consump-

tion for all four chips. In this setup one channel consumes ∼700 µW. This ma-

gnitude is much higher than the dedicated 25 µW/channel. To reach the goal of

25 µW/channel further improvement is needed.

7.1 Power On Digital (POD) module

The POD module has been designed to meet the power budget of the ILC. In

the current setup all chips are switched on during the read phase. With the POD

module only the chip that is read out is switched on in the read phase. Instead

of 150 ms each chip is switched on for ∼ 6.25 ms. Additionally the time where all

the electronics is switched off is enlarged to 189.55 ms. If a POD module is used

the power should be changed in time window 4 and 5 (t4, t5), see Tab. 3.

The POD module should improve the power consumption to 7.63 mW per chip

or ∼200µW per channel. This value is 8 times too big for the dedicated 25 µW
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