T3B – Towards Publication

CALICE Collaboration Meeting Annecy 9. September 2013

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Lars Weuste, Frank Simon, Christian Soldner Max-Planck-Institut für Physik

1. T3B - An Experiment to Measure the Time Structure of Hadronic Showers

1. T3B - An Experiment to Measure the Time Structure of Hadronic Showers

Technical, few author MPP publication - Related to CAN-033:

- T3B Detector Layout
- T3B Data Acquisition System
- Signal Reconstruction of SiPM Signals
- Calibration Routines:

 T3B - An Experiment to Measure the Time Structure of Hadronic Showers

Technical, few author MPP publication - Related to CAN-033:

- T3B Detector Layout
- T3B Data Acquisition System
- Signal Reconstruction of SiPM Signals
- Calibration Routines:

cumpration noutines.	MIP Energy Scale	Afterpulsing Correction and Study		
	Timing Corrections	Digitization of Simulated Data		

2. The Time Structure of Hadronic Showers in Highly Granular Calorimeters with Tungsten and Steel Absorbers

2. The Time Structure of Hadronic Showers in Highly Granular Calorimeters with Tungsten and Steel Absorbers

Full CALICE collaboration paper - Related to CAN-038:

- T3B Setup at the SPS Test Beam with SDHCAL and W-AHCAL
- Hadronic Cascade Models and their Timing Capabilities
- T3B Standalone Analysis Results:

2. The Time Structure of Hadronic Showers in Highly Granular Calorimeters with Tungsten and Steel Absorbers

Full CALICE collaboration paper - Related to CAN-038:

- T3B Setup at the SPS Test Beam with SDHCAL and W-AHCAL
- Hadronic Cascade Models and their Timing Capabilities

 T3B Standalone Analysis Results: 	Timing Comparison Steel vs. Tungsten	Radial Shower Timing	
	Data vs. MC Comparison		

3. Longitudinally Resolved Hadronic Shower Timing in a Highly Granular Scintillator Tungsten Calorimeter

3. Longitudinally Resolved Hadronic Shower Timing in a Highly Granular Scintillator Tungsten Calorimeter

Full CALICE collaboration paper – Mostly new Analysis Results:

- Synchronization of T3B to CALICE W-AHCAL Data
- Shower Start Identification
- T3B Sync
 Analysis Results:

3. Longitudinally Resolved Hadronic Shower Timing in a Highly Granular Scintillator Tungsten Calorimeter

Full CALICE collaboration paper – Mostly new Analysis Results:

- Synchronization of T3B to CALICE W-AHCAL Data
- Shower Start Identification

 T3B Sync	Longitudinal Shower	Total Energy Deposition		
Analysis Results:	Timing	Fraction vs. Time		
	Longitudinal Shower and Calorimeter Profile	Timing Comparison Pion vs. Proton Response		

HIGHLIGHTS PAPER 1:

T3B – An Experiment to Measure the Time Structure of

Hadronic Showers

The T3B Experiment

What is T3B?

- One strip with 15 scintillator cells
- Cell dimensions: 3 x 3 x 0.5 cm³
- Light readout by SiPMs: MPPC-50P
- Data acquisition: 4 USB oscilloscopes with 1.25 GSa/Sec at all channels
- Setup optimized to measure the
- time development of hadronic showers

435 mm

1000 mm

Tile geometry optimized for direct coupling

1 Temperature Sensor PT1000 for each T3B cell

Waveform Decomposition:

- Determine averaged 1 pixel response (monitored live @ test beam)
- Subtract 1 pixel waveform iteratively from local maximum of physics waveform
- Obtain the time of detection of a photon by the SiPM with subnanosec precision

HIGHLIGHTS PAPER 2:

The Time Structure of Hadronic Showers in Highly

Granular Calorimeters with Tungsten and Steel

Absorbers

Data Sets (acquired at SPS in 2011):

- 60 GeV hadrons @ Tungsten-AHCAL or Steel-SDHCAL
- 180 GeV muons for comparison
- Particle identification with information from Cerenkov counters possible
- Test beam setup also implemented into custom GEANT4 simulation
- Focus on T3B standalone analysis in Paper 2

- 2D Histogram (one per T3B cell): E_{dep} vs TofH
 - → Represents the full timing information of the TofH analysis!
- Study projections of histogram for different run characteristics:
 - Steel vs W absorber
 - Mean TofH vs Radius
 - Muon Data @ 180 GeV 200 Time of first Hit [ns] 10³ 150 10² 100 50 10 2 Energy Deposition [MIP]
- Data vs MC

- 2D Histogram (one per T3B cell): E_{dep} vs TofH
 Depresents the full timing information of the
 - → Represents the full timing information of the TofH analysis!

Data vs MC

- Study projections of histogram for different run characteristics:
 - Steel vs W absorber
 - Mean TofH vs Radius

- 2D Histogram (one per T3B cell): E_{dep} vs TofH
 Depresents the full timing information of the
 - Represents the full timing information of the TofH analysis!
- Study projections of histogram for different run characteristics:
 - Steel vs W absorber
 - Mean TofH vs Radius

Muon, Steel, Tungsten Comparison - clear distinction between:

- Dominant prompt shower component
- Fast delayed shower component (cascade neutrons)
- Slow delayed shower component (evaporation neutrons)

Muon, Steel, Tungsten Comparison - clear distinction between:

- Dominant prompt shower component
- Fast delayed shower component (cascade neutrons)
- Slow delayed shower component (evaporation neutrons)

Mean TofH: @ -20 ns to +200 ns:

- Muons: No delayed component
- Steel: Delayed hits w/ small E_{dep}
- Tungsten: Delayed hits w/ E_{dep} up to 5 MIP

Mean TofH in range -20 ns to +200 ns:

- Prompt shower core (mainly π⁰ decay)
 Surrounded by hadronic halo (influenced by delayed neutrons)
- Delayed components: W >> Fe

Paper 2: MC vs Data Comparison

Mean TofH vs Edep

MC ⇔ Data: Mean TofH vs E_{dep}

Steel: All models reproduce data well

Tungsten: QGSP_BERT overestimates delayed shower component

Paper 2: MC vs Data Comparison

<u>Mean TofH vs Radius</u>

MC 🗇 Data: Mean TofH vs Shower Radius

Steel: All models reproduce data well

Tungsten: QGSP_BERT overestimates delayed shower component

HIGHLIGHTS PAPER 3:

Longitudinally Resolved Hadronic Shower Timing in a

Highly Granular Scintillator Tungsten Calorimeter

Reminder:

Synchronisation W-AHCal to T3B

T3B and the CALICE W-AHCal use the same trigger signal
 → Data can be synchronized offline

Eventdisplay: Hadron Data @ 60GeV (Tungsten)

Synchronisation W-AHCal to T3B

Reminder:

T3B and the CALICE W-AHCal use the same trigger signal
 → Data can be synchronized offline

First hadronic interaction

- Happens in a certain depth
- Can be identified in CALICE W-AHCal with Marina PTF
- Ordering of T3B Hits relative to the shower start

Shower start relative to T3

Recovery of longitudinal dimension

Eventdisplay: Hadron Data @ 60GeV (Tungsten)

Mean TofH vs Distance from Shower Start

Data \Leftrightarrow MC Comparison:

- Longitudinal: ≈1 ns over 5 λ_l (Radius 0 to 4.6 cm, innermost two T3B Tiles)
- QGSP_BERT overestimates longitudinal delay

- Shower Profile
 - Purely from Shower Start & Energy Deposition @ T3B
- Time Ranges:
 - Prompt: 0 2.4 ns
 - Intermediate: 16 ns
 - Late: 250 ns

- Shower Profile
 - Purely from Shower Start & Energy Deposition @ T3B
- Time Ranges:
 - Prompt: 0 2.4 ns
 - Intermediate: 16 ns
 - Late: 250 ns

- **Shower Profile**
 - Purely from Shower Start & Energy Deposition @ T3B
- Time Ranges:
 - **Prompt:** $0 2.4 \text{ ns} \rightarrow$ Dominating Contribution
 - Intermediate: 16 ns
 - 250 ns Late:

- Shower Profile
 - Purely from Shower Start & Energy Deposition @ T3B
- Time Ranges:
 - Prompt: 0 2.4 ns →
 - Intermediate: 16 ns
 - Late:

Peak Further in Calorimeter

Weight longitudinal shower • profile by # shower starts in layer 1

Entries [a.u.]

Stack weighted profile of layer
2, 3, 4 ... on top

 Weight longitudinal shower profile by # shower starts in layer 1

Stack weighted profile of layer
2, 3, 4 ... on top

 Weight longitudinal shower profile by # shower starts in layer 1

- Stack weighted profile of layer
 2, 3, 4 ... on top
- Obtain calorimeter profile
 - → can be investigated in time resolved manner

 Weight longitudinal shower profile by # shower starts in layer 1

Paper 3:

Calorimeter profile in 3 time ranges:

- Prompt: 0 to 2.4 ns
- Intermediate: 2.4 to 16 ns
- Late: 16 to 250 ns

→ Good MC performance in prompt range, high discrep. in late range

Paper 3:

Calorimeter profile in 3 time ranges:

- Prompt: 0 to 2.4 ns
- Intermediate: 2.4 to 16 ns
- Late: 16 to 250 ns

→ Good MC performance in prompt range, high discrep. in late range

Paper 3:

Calorimeter profile in 3 time ranges:

- Prompt: 0 to 2.4 ns
- Intermediate: 2.4 to 16 ns
- Late: 16 to 250 ns

→ Good MC performance in prompt range, high discrep. in late range

- 100% := 200 ns
- > 97% of E_{dep}
 within 10 ns !
- QGSP_BERT
 overestimates
 delayed E_{dep}

Paper 3: Pion / Proton Difference

- Mean TofH vs Shower Radius
 - Simultaneous Fit of Proton/Pion
 - Only Parameter d individual to Proton/Pion
 - (a,b,c shared)
- No sign. Difference!

$$f(x) = \exp(ax+b) + cx + d_{p/\pi}$$

- Large instantaneous energy deposition
 - Quickly fades away
- Afterglow up to 250ns

- Large instantaneous energy deposition
 - Quickly fades away
- Afterglow up to 250ns

- Large instantaneous energy deposition
 - Quickly fades away
- Afterglow up to 250ns

- Large instantaneous energy deposition
 - Quickly fades away
- Afterglow up to 250ns

- Large instantaneous energy deposition
 - Quickly fades away
- Afterglow up to 250ns

- Large instantaneous energy deposition
 - Quickly fades away
- Afterglow up to 250ns

- Large instantaneous energy deposition
 - Quickly fades away
- Afterglow up to 250ns

CONCLUSIONS

Conclusion

- Measurement of time evolution of hadronic showers possible!
 - Most in CAN-033 & CAN-038
 - New: Synchronization with W-AHCal
 - Pion 🗇 Proton
 - Longitudinal Mean Time of First Hit
 - Timed Shower/Calorimeter Profiles
 - Energy Deposition Fraction
- Validation of Geant4 physics lists:
 - QBBC & QGSP_BERT_HP reproduce data
 - QGSP_BERT overestimates late components

<u>Outlook</u>

- 3 Publications:
 - 1. T3B Technical & Calibration Paper
 - Small paper, few authors, almost ready for submission
 - 2. Analysis: Fe ⇔ W Absorber Comparison
 - Draft almost ready for CALICE Editorial Board
 - 3. Analysis: W Absorber with long. Information
 - Draft exists, will be given to Editorial Board after #2
- Note:
 - Lars & Chris finished their Phd in June 2013
 - ➢ Will leave soon (Okt/Nov)
- Thanks for all the support!

BACKUP

Geometric Weighting

tile	1	2	3	4	5	6	7	8
weight	0,786	6,5	13	19,5	26	32,5	39	45,5
tile	9	10	11	12	13	14	15	
weight	52	58,5	65	71,4	77,9	84,4	90,9	

Energy Deposition Fraction:

TofH vs Raw Geant4

