Energy Reconstruction - ECAL+AHCAL+TCMT

Miroslav Gabriel

Max-Planck-Intitut für Physik

CALICE meeting Annecy September 2013

- Precise energy resolution mandatory for calorimeter
- Work started in CAN-15, CAN-35 and the software compensation paper, but discontinued
- CAN-35/software compensation paper focus on the AHCal
- Calibration in CAN-15 outdated (e.g. no temp correction)
- Expand analysis to complete setup

Up to date analysis for the whole '07 prototype needed!

The idea:

• W ECal + Fe AHCal + Fe TCMT:

three detectors that need to be treated independently

- Different absorber thickness:
 - ECal: 1.4mm, 2.8mm and 4.2mm
 - AHCal: 20mm
 - TCMT: 19mm and 105mm
- Introduce weighting factors ω_i
- Advantage of the prototype: energy is known!

So sum up the energy and use TMinuit for minimization:

$$\chi^{2} = \sum_{events} \left(\sum_{i} E_{i} \omega_{i} - E_{beam} \right)^{2}$$

layer dependent weights:

- Multiply every hit by layer thickness
- Convert MIP→GeV giving ECal, AHCal and TCMT each one ω_i
 - **3** ω_i total

single weights:

- Divide detectors in sub detectors
- 3xECal, 1xAHCal and 2xTCMT
- MIP \rightarrow GeV with ω_i for each
 - 6 ω_i total

Reconstructed energy:

- 2 runs for each energy (except 18 GeV)
- Reconstructed energy fairly linear
- Insignificant difference between the two techniques
- Considerable difference of the runs for 20 and 25 GeV

Energy resolution:

 Results favor single weights

 But very similar outcome

Ideas for further improvement?

Software compensation:

- $\frac{e}{h} > 1 \Rightarrow$ non-linearity in the detector response
- em sub showers have higher energy density
- MIP amplitude normalized to cell volume

Total:

- 3x6 ECal bins(1.4mm, 2.8mm, 4.2mm)
- 1x10 AHCal bins
- 1x5(19mm) + 1x3(105mm) TCMT bins
- 36 ω_i weights

- AHCal for example:
 - Discriminate using energy density
 - Give each density bin own ω_i

Software compensation:

 Results still under investigation!

 HEIGHER WEIGHTS for LOWER ENERGY

But weights change strongly with energy! Parametrization needed!

Energy resolution:

- S.c. weights: every run calculated independently!
- Therefor not comparable

Software compensation as appetizer for what's possible!

Why:

- Active ECal layers are only 18cm wide
- AHCal layer are 90cm
- Absorber plates wider than 18cm!

front view on an ECal layer

ECal leakage:

 Single weights /no s.c. calculated from 330412

 Applied on 331282

 Without filter small tail

10⁻¹ Energy distribution entries normal distribution leakage filtered 10⁻² 10⁻³ normalized 10⁻⁴ 10⁻⁵ 10⁻⁶ 20 30 50 80 90 10 40 60 () Energy [GeV]

indication for not detected energy loss!

Figure: Energy distribution with and without leackage filter

- Further study of the ECal leakage might enhance the resolution
- Complete combined analysis of the software compensation paper!
- Goal CALICE analysis note, maybe more!
- Find more pieces in the puzzle

Questions?

Backup

Run numbers:

run	particle	beam energy,	run	particle	beam energy,
number	type	GeV	number	type	GeV
330332	π^{-}	10	330412	π^{-}	40
330643	π^-	10	330560	π^{-}	40
330327	π^-	18	330559	π^-	45
330649	π^{-}	20	330961	π^-	45
330771	π^-	20	330558	π^{-}	50
330325	π^-	25	331335	π^+	50
330650	π^{-}	25	331282	π^+	60
331298	π^+	30	331333	π^+	60
331340	π^+	30	330962	π^-	80
330551	π^-	35	331280	π^+	80
330960	π^{-}	35			
					Ap. Ag > ± t