Shower development of particles with momenta from 10 to 100 GeV in the CALICE scintillator-tungsten AHCAL

Angela Lucaci-Timoce on behalf of the CALICE W-AHCAL group

Introduction

- For experiments at CLIC: calorimeters with **tungsten** absorber
- Tungsten mostly used for electromagnetic calorimeters, seldom for hadron calorimeters (e.g. ATLAS FCAL tungsten/LAr)

Test beams with CALICE scintillator W-AHCAL

- 2010 CERN PS:
 - $1~{\rm GeV}{\leq}~p_{\rm beam} \leq 10~{\rm GeV}$
- 2011 CERN SPS: 10 GeV $\leq p_{\text{beam}} \leq$ 300 GeV

Publications based on CALICE W-AHCAL test beams

- • CAN-036 (2010 analysis)
- Proceedings in NIM
- Paper 15 (under review)
- CAN-044/LCD-Note-2013-002 (2011 analysis)
- CIN-021 (additional information to 2011 analysis)
- LCD-Note-2012-002 (beam line instrumentation)
- LCD-Note-2011-001 (temperature studies)
- LCD-Note-2013-006 (particle identification)

2011 data taking

- CERN SPS: June, July and September 2011
- W-AHCAL (38 layers) + Tail Catcher and Muon Tracker, TCMT
- Energies: from 10 to 300 GeV

 Beam: mix of pions, protons, kaons, muons and electrons
⇒ particle identification with threshold Cherenkov counters,

see

talk by Dominik Dannheim

- This talk: analysis of data with $p_{\sf beam} \leq$ 100 GeV (CAN-044)
- For higher energies need to consider the TCMT, see **talk by Eva Sicking**

Analysis of e^{\pm} data

Selection of e^\pm events

- Tungsten: dense material (about 3 X₀ per layer)
 → electromagnetic showers will form a cluster in the first calorimeter layers
- Selection:
 - one identified cluster
 - there should be no tracks

 e⁻ response about 3% higher than for e⁺ (not understood, negative runs taken in July, positive ones in September 2011)

"Real knowledge is to know the extent of one's ignorance" (Confucius)

Analysis of e⁺ data: Monte Carlo comparison

• Novosibirsk fit (Gaussian with tail) in a region defined by $mean \pm 1.5 \ \sigma$

- Simulation predicts about 3% lower response than observed
- Implementation of detector material in Mokka was checked
- But: significant systematics from the scaling factor of the SiPM response curves

Scaling factor of the SiPM response curves

• To estimate systematics due to scaling factor s: find the highest energetic cell and re-run the reconstruction with modified scaling factor for that cell: $s \pm 1$ RMS

Example: 40 GeV e^+

• The highest energy cell contains more than 60% of the total energy in layer 2

• Impact of scaling factor on the average energy at 40 GeV: $\langle E \rangle = 1186^{+3\%}_{-2\%}$ MIPs

Analysis of hadron data

Hadron selection

- First level of particle identification based on Cherenkov threshold counters
 → purity of selected events better than 94% (85%) for π[±] (protons)
- Muons rejected by requesting that the layer of the primary interaction is in any of the first 3 calorimeter layers

Hadron analysis: variation of detector response with time

- Calorimeter response to protons is stable with time, but variations observed for π^+ and π^-
- For the analysed energies: π^- higher response than π^+

• Similar variations observed in the muon response:

 \Rightarrow Part of variations seem to be related to the calorimeter itself (not clear if due to charge, or just time dependence)

Analysis of π^{\pm} data: $\langle E_{vis} \rangle$ vs p_{beam}

- Energy for π^- higher than for π^+ (variations of detector response in time of about 3%)
- Agreement between data and QGSP_BERT_HP/FTFP_BERT_HP for π^+

Analysis of π^+ data: energy sum

• π^+ : good agreement between data and QGSP_BERT_HP/FTFP_BERT_HP for all analysed energies

Analysis of π^+ data: longitudinal profile from shower start

 QGSP_BERT_HP: tendency to overestimate the energy deposition in the first part of the shower

Analysis of π^+ data: z_{cog}

- z_{cog} : energy weighted centre-of-gravity
- Good agreement between data and QGSP_BERT_HP

CALICE Preliminary

W-AHCAL 2011, π⁴

Data QGSP BERT HP

Analysis of π^+ data: radial profiles

• Monte Carlo predicts a higher energy density in the core of the shower than observed

Analysis of proton data

$\operatorname{proton}/\pi^+$ ratio

• For a non-compensating calorimeter (e/h > 1), expect $E_{protons} < E_{\pi^+}$ (because $\pi^0 \rightarrow \gamma$ production is, on average, smaller in proton-induced showers)

Angela Lucaci-Timoce

CALICE meeting - 9th September 2013

Analysis of \mathbf{K}^+ data

- K⁺: good agreement between data and QGSP_BERT_HP/FTFP_BERT_HP
- QGSP_BIC_HP predicts too low energy

Comparison of the response for different particle types

- Residuals from the linear fit of π^+ experimental data
- Deviations better than $\pm 2\%$ for π^+ and protons, and worse for e⁺

Summary and conclusions

- Negative polarity runs have higher response than positive polarity runs (variations of detectore response with time of about 3%)
- e^+ : disagreement between data and simulation (partially explained by imperfect scaling factors of the SiPM response curves)
- $\pi^+,$ protons and $K^+:$ good agreement between data and QGSP_BERT_HP

With the future behind me, and the past in front **Eme Thank you**

BACKUP

Scaling factor of the SiPM response curves

- SiPM response curves measured before mounting on the tiles
- Due to geometrical effects, maximum number of fired pixels in case of mounted SiPMs is about 80% of that for bare SiPM, with a large spread (from Fe-AHCAL em paper,
- Example of saturation curves with different scaling factors, for a given cell

Systematic uncertainties

Data:

Particles	Measurement	Uncertainty	Total sys. uncert.
40 GeV e ⁺ .	Total energy sum	$\pm 2.0\%$ (MIP scaling factor) $\pm 2.0\%$ (stability of detector response) +3%, $-2.0%$ (saturation scaling)	+4.1%, -3.5%
	Energy sum per layer	$\pm 2.0\%$ (MIP scaling factor) $\pm 2.0\%$ (stability of detector response) +9%, $-10%$ (saturation scaling)	+9.4%, -10.4%
Hadrons	Total energy sum	$\pm 2.0\%$ (MIP scaling factor) $\pm 3.1\%$ (stability of detector response) -0.5% (saturation scaling)	±3.7%

• **Simulation**: +5% in the energy scale due to imprecise knowledge of the cross-talk factor