

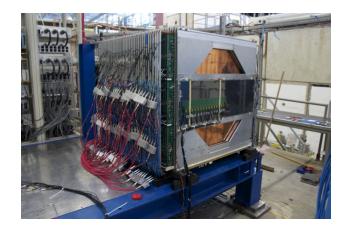
W-DHCal simulation and digitisation

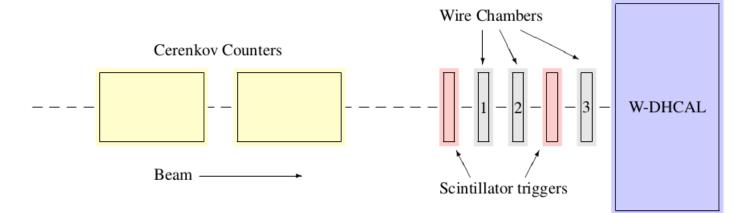
CALICE Meeting September 9-11 2013, Annecy

Samir Arfaoui [CERN/PH-LCD] samir.arfaoui@cern.ch

on behalf of the CLIC Detector and Physics Study and William Nash [Boston University]

- Introduction
 - Detector Descritption
 - Mokka model
- Calibration and Particle Identification
 - RPC Inefficiency rescaling
 - Muon Identification
- RPC Digitisation Optimisation
 - Parameter scans and comparisons
- Results
 - nHits distributions
 - <nHits> vs. Energy
- Conclusion and Perspectives


2



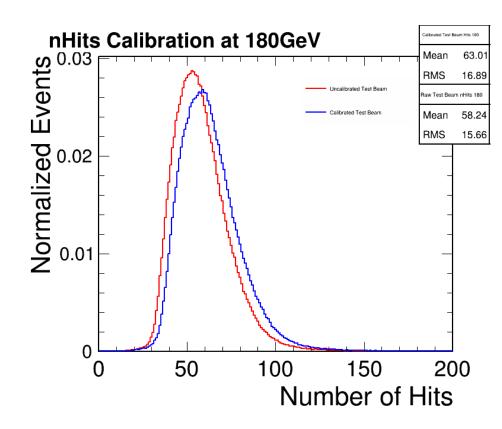
Detector description

- 54 RPC Layers
 - Main stack: 39 layers with W absorber
 - TailCatcher: 15 layers with Steel absorber
- Readout: 96x96 1cm² cells / layer
 - Total: ~500000 readout channels (WR!)
- Latest test beam periods at CERN
 - 2 weeks at PS: 1-10 GeV
 - 4 weeks at SPS: 10-300 GeV
 - Total: >30 million events recorded

- Octogonal tungsten absorbers + support from W-AHCal driver
- RPC cassette contents, layout, and sensitive detector description from Steel DHCal (Kurt Francis et al.)
- Beam instrumentation (scintillators, Cerenkov counters, and Wire Chambers) from W-AHCal simualtion ingredients
- At the moment, all the simulation has been done only with the main stack

- Output of simulation
 - Geant4 hits containing individual energy deposits (a.k.a "hit contributions", a.k.a "points")
 - These "points" then have to be digitised in order to fold in the RPC response

Note: Simulated beam profile is Gaussian with 5 cm width, no angular spread


Efficiency correction

- Goal: correct for RPC inefficency in data before comparing to simulation
- For each individual RPC in each run, efficiency is determined in data by dedicated Marlin processor

Procedure

- check RPC efficiency
- if < 20%, remove RPC in data and Monte Carlo
- else, rescale <nHits>

Muon identification

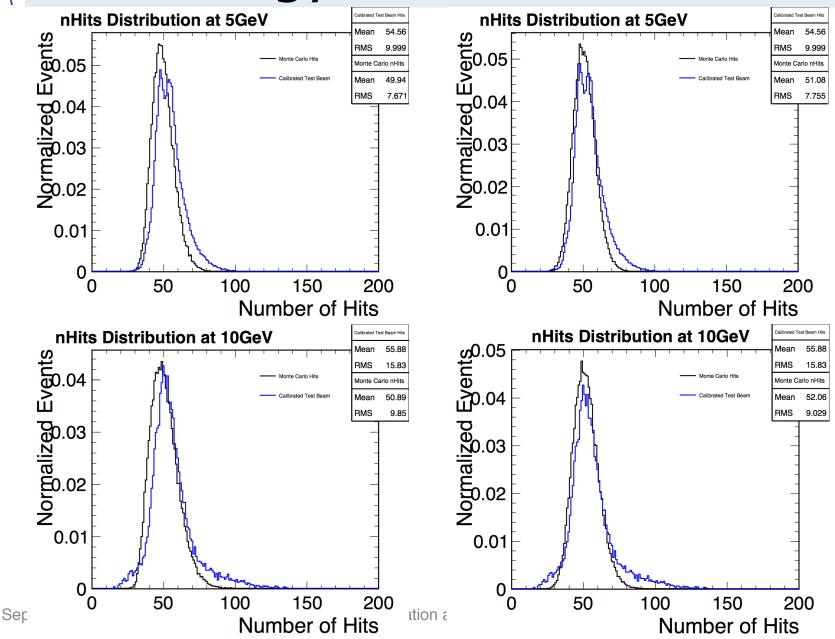
- Muon selection is performed by looking at consecutive small clusters that form a straight line
- Procedure
 - In each layer, look for a cluster of size < 5, if none in first 8 layers or in 3 or more consecutive layers, throw event
 - Perform straight line fit, select good fits with chi2/ndf < 5
 - Additional cut: <nClusters>/layer < 1.2</p>

Percentage of Muons	Run Number
32.69%	660095
12.38%	660177
16.65%	660217
11.86%	660229
49.50%	660254
87.23%	660525
47.06%	660507
	32.69% 12.38% 16.65% 11.86% 49.50% 87.23%

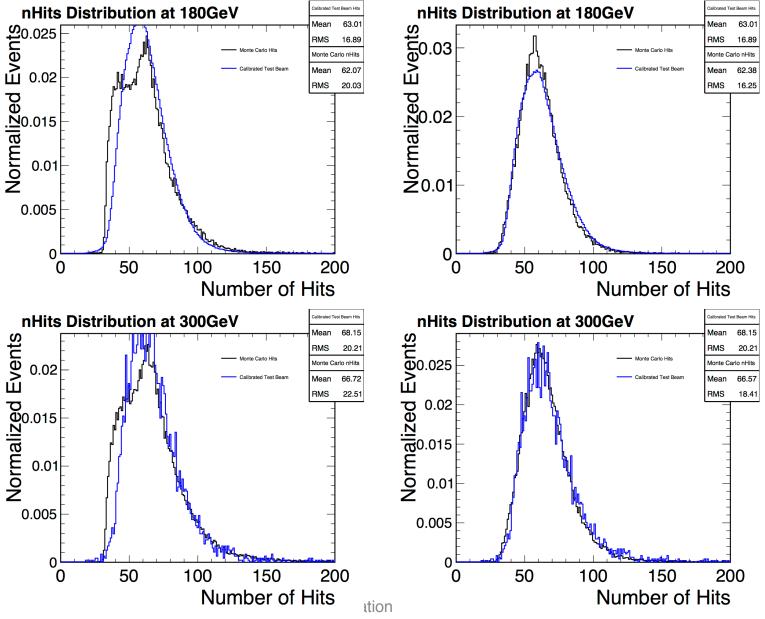
Digitisation parameters

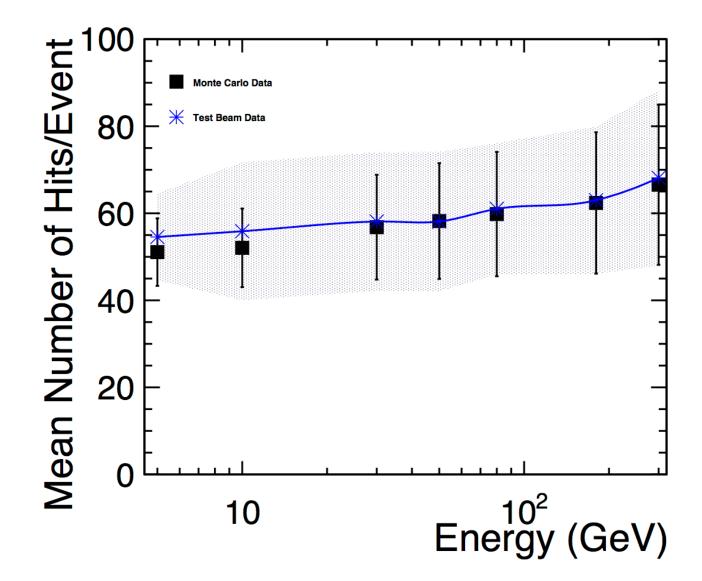
There are 6 parameters used to tune RPCSim, each with a different physical significance. Q is the full charge produced by a single energy deposit

- DistCut Closest lateral distance between two energy deposits which will still form a full shower
- \mathbf{Q}_0 Charge correction factor $(Q_{eff} = Q \mathbf{Q}_0)$
- **Slope1** Exponential slope of the lateral spread of charge $\left(e^{\frac{-\sqrt{x^2+y^2}}{\text{Slope1}}}\right)$, dies faster than Slope2
- **Slope2** Exponential slope of the lateral spread of charge $(e^{\frac{-\sqrt{x^2+y^2}}{\text{Slope2}}})$, dies slower than Slope1
- Ratio The charge produced by the lateral spread is split so that $Q_{pad} \approx \sum_{i=1}^{deps} \int_{0}^{Q_{eff}} \mathrm{d}Q'((1-\text{Ratio}) \cdot e^{\frac{-\sqrt{\Delta x_i^2 + \Delta y_i^2}}{\text{Slope1}}} + \text{Ratio} \cdot e^{\frac{-\sqrt{\Delta x_i^2 + \Delta y_i^2}}{\text{Slope2}}})$
- \mathbf{T} Energy threshold for a cell to be on


Digitisation tuning

- What goes in
 - Muon-rich, efficiency-corrected data sample at given energy
 - Pure muon Mokka simulation sample at same energy
- Procedure
 - Randomly vary the 6 digitisation parameters
 - Run RPCSim Marlin processor on Mokka sample
 - Compare <nHits> distributions for data+MC in form of binby-bin difference squared (Λ, kind of a chi-square)
 - Iterate until Λ is sufficiently small


Parameter	Default	Best Fit
DistCut	0.092 cm	0.075 cm
\mathbf{Q}_0	0.201 pC	0.189 pC
Slope1	0.0678 cm	-
Slope2	0.671 cm	0.247 cm
Ratio	0.345	1
т	0.3645 pC	0.6818 pC
٨	$1.3 imes 10^{-3}$	1.5×10^{-4}


High energy CÊRN

Septe

Summary and outlook

- Mokka
 - Main stack driver complete and functionnal
 - To do
 - Implement Tail Catcher and Beam Instrumentation
 - Add angular spread in beam profile, or better: use realistic beam profile from Wire Chamber data
 - Officialise drivers, consolidate database information
- In the data
 - Review efficiency correction, should we do it before comparing to MC?
 - Is this muon selection the best we can do?
- RPC digitisation
 - CPP version of dual-exponential model implemented as Marlin processor
 - Parameter scan and optimisation procedure in place
 - Better discriminator? Should we keep comparing <nHits>?
 - Should we try other digitisation models?
- Outlook
 - When the procedure has been reviewed and the digitisation parameters satisfactory with muons
 - Optimise DistCut with electrons
 - Look at how well pion showers at digitised
 - Write paper!