Data Quality in the W-DHCAL test beam data

Helga Holmestad

September 10th 2013, CALICE Collaboration Meeting, Annecy

Results

Summary

W-DHCAL test beam data

- 54 RPC layers
- Tungsten absorber in main stack
- Steel absorber in tail catcher
- 96×96 cells in each detector layer
- Beam momentum in the range 1-300 GeV
- Used pion runs
- Data taken in 2012 at CERN

Data Quality

- Data quality issues in the test-beam data
 - Box Events
 - Dead cells
 - Oversensitive cells
- What to do:
 - Box Event \rightarrow Throw away the event
 - Oversensitive and dead cells \rightarrow Remove the cells both in data and MC

Results

Box Event

- · Seen in some events in individual layers
- Unexpectedly many hits along the border of a Front end Board (FeB)
- The whole FeB might also be filled
- Compare number of hits on border with number inside/outside border

Results

Dead and oversensitive cells

All hits in detector layer 26/54 for run 6600488 (270 GeV and 14370 events)

- Project all hits in a run into into one histogram per layer
 - Dead/Ineffective RPC
 - Oversenstive chips
 - Dead Chips
 - Oversensitive cells
 - Dead cells
- Algorithm to analyze these histograms

Dead and oversensitive cells

All hits in detector layer 22/54 for run 6600488 (270 GeV and 14370 events)

Results

- Project all hits in a run into into one histogram per layer
 - Dead/Ineffective RPC
 - Oversenstive chips
 - Dead Chips
 - Oversensitive cells
 - Dead cells
- Algorithm to analyze these histograms

Summary

Dead and oversensitive cells

All hits in detector layer 22/54 for run 6600488 (270 GeV and 14370 events)

Results

- Project all hits in a run into into one histogram per layer
 - Dead/Ineffective RPC
 - Oversenstive chips
 - Dead Chips
 - Oversensitive cells

Dead cells

• Algorithm to analyze these histograms

Dead and oversensitive cells

All hits in detector layer 22/54 for run 6600488 (270 GeV and 14370 events)

Results

- Project all hits in a run into into one histogram per layer
 - Dead/Ineffective RPC
 - Oversenstive chips
 - Dead Chips
 - Oversensitive cells
 - Dead cells

• Algorithm to analyze these histograms

Dead and oversensitive cells

All hits in detector layer 22/54 for run 6600488 (270 GeV and 14370 events)

Results

- Project all hits in a run into into one histogram per layer
 - Dead/Ineffective RPC
 - Oversenstive chips
 - Dead Chips
 - Oversensitive cells
 - Dead cells
- Algorithm to analyze these histograms

Interference between box events and oversensitive cells

- Oversensitive cells makes fake box events
- Difficult to find dead and oversensitive cells with the box events in the data
- Solution:
 - Pre-test to remove oversensitive chips and ground connector cells
 - Remove box events
 - Full pattern finder to make a list of cell IDs for the bad cells in the run
- Pattern finder algorithm:
 - Use the histograms with the projected hits, one histogram per detector layer
 - Looks for edges (sudden increase/deacrease in the histogram)

Box event fraction – energy dependence

W-DHCal Data Quality

Helga Holmestad

Box event fraction – preclean

W-DHCal Data Quality

Results

Fraction of cells removed

W-DHCal Data Quality

Results

Fraction of cells removed

W-DHCal Data Quality

Summary

- Data quality issues
- Box events
 - Remove the event
 - Large fraction of box events at high energies
- Dead and oversensitive cells
 - Remove the problemetic cells
 - Less than 5% of the cells removed

BACKUP SLIDES

Effect on hit distribution

- Did simple particle selection to find pions
- It does not have large effect on the distribution