IP FB Tests Status

Feedback On Nanosecond Timescales (FONT):

Philip Burrows

Neven Blaskovic, Douglas Bett, Glenn Christian, Michael Davis, Young Im Kim, Colin Perry

John Adams Institute

Oxford University

Outline

- Reminder of ATF2 IP FB concept
- Preliminary results of June beam runs
- Summary
- Speculations

ATF2 IP FB loop scheme

Tests > October 2013

Tests < July 2013

Existing IP-BPM geometry

2011.6.29 Y.Honda

- Relative location of IP and two IPBPMs in BSM chamber and PreIPBPM.
- Accuracy of the number should be a few mm.

Layout with new IP kicker

Designed by Oxford

Fabrication arranged by KEK

Installed May 2012

Test programme

- Preparations for beam stability in IP region with
- 2-bunch beam, bunch separation 270ns:
- 1. Readout of IPBPMs with 2-bunch beam
- 2. Upstream FONT FB: record beam in IPBPMs
- 3. Feed-forward from upstream FONT BPMs \rightarrow IP kicker: record beam in IPBPMs
- 4. IP FB using IPBPM signal and IP kicker
- Standard procedure is to correct beam in y at IPB

Resolution of IPBPMs

Single-bunch mode, scan of y-waist to minimise jitter in IPB: minimum ~ 120nm → resolution < 120nm

Upstream FB: example

Observe effect of upstream FB at IP

Upstream FB: position scan

- FB gain nominal for correction in FONT region
- Scan ZV5X (upstream of FONT region)
- Monitor beam position and jitter at IPB

Upstream FB centres beam, but increases jitter

Upstream FB: gain scan

- FB gain scan
- Monitor beam position and jitter at IPB

Some jitter decrease at low gain

Upstream FB: bunch correlations

FB does remove correlated jitter component, but dominated by white noise

Feed-forward mode

- FF gain optimised for best correction @ IP
- Scan ZV5X (upstream of FONT region)
- Monitor beam position and jitter at IPB

FF centres beam, and reduces jitter x 2

FF: bunch correlations

FF removes correlated jitter component, not white noise dominated

IP FB

- Nominal IP FB gain
- Scan QD0FF to move waist (increases jitter)
- Monitor beam position and jitter at IPB

IPFB reduces jitter as waist is scanned across IPB

Optimised IP FB

- IP FB gain optimised empirically
- Scan QD0FF to move waist (increases jitter)
- Monitor beam position and jitter at IPB

IPFB reduces jitter to minimum of ~ 100nm

Optimised IP FB

- IP FB gain optimised empirically
- Scan QD0FF to move waist (increases jitter)
- Monitor beam position and jitter at IPB

IPFB reduces jitter to minimum of ~ 100nm Minimum jitter (waist at IPB) 100nm!

IP FB latency measurement

Latency ~ 160ns

Example of best IP FB

Example of best IP FB

IP FB: bunch correlations

IP FB removes correlated jitter component, not white noise dominated

IP correction test programme

- Preparations for beam stability in IP region with
- 2-bunch beam:
- 1. Readout of IPBPMs with 2-bunch beam
- 2. Upstream FONT FB: record beam in IPBPMs
- 3. Feed-forward from upstream FONT BPMs \rightarrow IP
- kicker: record beam in IPBPMs
- 4. IP FB using IPBPM signal and IP kicker

Summary of June 2013 runs

- Beam correction and jitter reduction observed at IP:
- Upstream FB gives marginal jitter improvement, but only at low gain (< 0.5 * nominal).
- **Upstream FF** gives clear factor 2 jitter reduction.
- IPFB works well, reduces locally incoming jitter: best performance is jitter reduced to 100nm probably limited by IPBPM resolution
- Data analysis preliminary, studies ongoing

- In order of performance:
- **1. Local IPFB works best to reduce jitter**
- 2. Upstream FF correction applied locally at IP OK
- 3. Upstream FB works poorly, only at low gain
 - \rightarrow Not a surprise (to me at least)
 - \rightarrow Jitter sources between FONT region and IP

eg. x jitter coupling into y?

more investigation needed