

KNU IP-BPM and Reference cavity

Siwon Jang (KNU)

- Basic design
- RF measurement of IP-BPMs
- KNU IP-BPM electronics modification
 - Modification of new electronics
 - **Fabrication of power divider for Ref. cavity BPM**
- Reference cavity BPM
 - Design of Ref. cavity BPM
 - Installation of tuning pin for frequency tuning
- Schedule

+ 11cm Low-Q IP-BPM design

11cm Low-Q IP-BPM drawings of HFSS

	Port	f ₀ (GHz)	β	Q ₀	Q _{ext}	QL	τ (ns)	V_out (uV/2nm)
Designed	X-port	5.7127	5.684	4959.29	872.42	741.91	18.72	7.739
Designed	Y-port	6.4280	5.684	4670.43	821.61	698.70	17.23	7.448
Double_1	X-port	5.6968	0.656	362.34	552.14	218.77	6.112	9.740
Double_1	Y-port	6.4099	0.668	845.66	1266.7	507.11	12.59	6.010
Double_2	X-port	5.6975	0.817	483.38	591.45	265.99	7.430	9.410
Double_2	Y-port	6.4097	0.641	834.70	1302.5	508.70	12.63	5.927
Single_1	X-port	5.6991	0.855	502.05	587.04	270.61	7.557	9.444
Single_2	Y-port	6.4089	0.986	1238.0	1255.9	623.43	15.48	6.037

Average frequency: X-port 5.6978GHz Y-port 6.4095GHz

Modified IP-BPM Electronics

- Total conversion gain: 54dB ~ 45dB (variable gain).
- The phase controller power connected to main electronics power.
- Reference cavity output signal power divider with -6dB att.
- Reference cavity signal power detector by using Crystal diode power detector for both direction.
- Add Heat sink plate on the electronics

+ IP-BPM Electronics modification

Gain controller 54dB ~ 45dB

+ Power divider for Ref. signals

The ref. cavity output is just one port, therefore the output signal should be split to connect LO signal port of each electronics and power detector.

+ Reference cavity BPM design

Reference cavity BPM drawings of HFSS

* Reference cavity BPM design

Cavity shape for HFSS simulation

Cavity size : 42.64mm,38.32mm
Beam Pipe radius: 8 mm (circular pipe)
Material of BPM: Steel Stainless
HFSS simulation need more optimization.
CST simulation also need to compare with HFSS

results

<1 + + + × + + + + + + + + + + + + + + +						
Port	f ₀ (GHz)	β	Q ₀	Q	S QL	τ (ns)
X-port	5.7034	0.0208	11c jd	ed valu	1140.68	31.83
Y-port	6.4100	0. N	ot de0. 50.61	36765.1	1165.46	28.94
	•		•			

Reference cavity frequency tuning

Way to tune the frequency of Reference cavity

