SiECAL Technological prototype Test Beam at DESY

Tokusui meeting 2013 Yuji Sudo (Kyushu University) Tokyo Univ. LAL LLR CALICE

SiW ECAL R&D

toł

Physics Prototype 2003 - 2011

Proof of principle Number of channels : 9720

Weight : ~ 200 Kg

Tech. Proto.

Technological Prototype 2010 – Technological solutions for the final detector

Test program

- 2012: Commissioning
 - Test of highly integrated electronics in continuous power mode
- 2013: Test of power pulsing Test in magnetic field

S/N > 10 (for all gains available with SKIROC2) R&D target is S:N = 10:1

Front end electronics: SKIROC

SKIROC (Silicon Kalorimeter Integrated Read Out Chip)

- Size 7.5 mm x 8.7 mm, 64 channels
- Variable gain charge amp, 12-bit Wilkinson ADC, digigal logic
- Large dynamic range (~2500 MIPs), low noise (~1/10 of a MIP)
- Self-trigger
- Low Power: (25 μW/ch) power pulsing

tokusui2013

Test beams with fabricated layers

Layer design for beam tests Integrated FE electronics Conservative ASU design for beam test - Si Sensor :5x5 mm² pixel and thickness of 325 μm

- 256 ch readout/layer
- 4 ASICs in PQFP package
- Up to 10 layers

2 e- (3 GeV, no tungsten)

Time constant of pedestal (center value)

• MIP event (Power Pulsing)

- Time constant of pedestal ~100 μ s.
- Time dependence of pedestal width is also ~100 us.
- It can be solved by changing FPGA firmware setting.

Power pulsing – Pedestal analysis

Noise for all the Pad of the detector

Power pulsing – MIP analysis

ASIC M2 and M4

- ASIC M1 and M3 are ok under power pulsing operation.
- The activity of digital lines disrupts ASICs M2 and M4.

Power pulsing tests in magnetic field

Active channels are stable up to 2T B field

Conclusion and outlook

- 2013: We successfully operated tech. proto. in power pulsing mode and tested in 2T magnetic field.
- Two beam test with conservative design ASU
 - Detailed evaluation of performance of system
 - A number of observed odd behaviors were actually related to peripheral devices or non optimal power supply
 - Self-triggering ASICs require very careful power management
 - Active channels are stable up to 2T B field (pedestal study)
- Addressing now issues of a real calorimeter system
 Large ASU : 16 ASICs par layer
 Long Slab : 10 ASUs
 Cooling
 - Test in strong B field

Data Analysis 2012 – Signal over Noise ratio

4 ASICs are mounted on a layer

Results after setting of trigger thresholds and event filtering White cells (noisy channel) : high threshold Correlation between noise and PCB routing

S/N > 10 (for all gains available with SKIROC2)

tokusui2013

Event displays

2 e- (3 GeV, no tungsten)

1 cosmic + 1 e-(3 GeV, no tungsten)

'Plane events???'

Observed in 2012 with significant frequency can be remedied by correct PreAmplifier reference

tokusui2013

Power pulsing

- Electronics switched on during > ~1 ms of ILC bunch train and data acquisition
- Bias currents shut down between bunch trains

Mastering of technology is essential for operation of ILC detectors

Calibration of ASICs

Establishment of calibration procedure for a larger number of cells

Beam spot

Detection efficiency

Data: 3GeV – No W – XY scan Total number of events: 2,3.10⁶ Track selection:

At least 3 layers with hits Linear fit of the e- track Nhits<10

Inefficiencies due to: Switched off channels Too high trigger thresholds (80%-95% of the MIP)

Should be improved with the next test beam (December)

Energy measurement

Energy calibration

Establishment of calibration procedure for a larger number of cells Homogeneity of response (x,y scan of detector)

