higgs recoil mass study @ 250GeV ILC

Tatsuhiko Tomita(Kyushu Univ.) Akiya Miyamoto(KEK), Taikan Suehara(Kyushu Univ.)

Outline

- What is "recoil mass" ?
- Why "qqH" ?
- background estimation, cut optimization
 - Method
 - Result
- Higgs recoil mass with "cut"
- Summary & Next step

What is recoil mass?

The typical higgs production mode at ILC is "higgs-strahlung".

In this channel, we don't have to look any higgs because we can use four momentum conservation. $m_{\rm recoil}^2 = (\sqrt{s} - E_Z)^2 - |\vec{p}_Z|^2$

(Initial 4-momentum of e⁺e⁻ collision is well determined.)

To use four momentum conservation, we should reconstruct Z mass as well as possible.

Why qqH ?

This is the big motivation for qqH study. Fortunately, detector performance, JER ~3.5% with PFA, support this qqH study. (ex. ZZ,WW separation)

Event list

- The recoil higgs mass against Z->hadronic with DBD sample.
- Polarization both (-0.8,0.3) and (0.8,-0.3) are used.
- for background estimation, two kinds of background were considered.
 - ZZ -> qqqq.
 - WW -> qqqq.

DBD sample is created with mixed final states,

so we select from qqqq events with flavors consistent to ZZ/WW event that two MC di-jet mass within 10 GeV from Z mass for ZZ events and two MC di-jet mass within 10 GeV from W mass for WW events.

reconstruction for background rejection

Forced 4-jets clustering for each event.
Reconstruct every pair of jets.

(1-2,1-3,1-4,2-3,2-4,3-4)

3.Record the pair which is the

- nearest to Z mass as horizontal axis. (ex. 2-3)
- 4.Reconstruct the rest pair. (ex. 1-4)
- 5.Record the rest pair mass as vertical axis.
- 6.Repeat 2-5 for every event.

Comparison of jet pairings

- We checked three types of jet pairing,
 - 1. select minimum (Z/W mass di-jet mass)² from every pair (same method as previous slide)
 - 2. select minimum (Z/W mass di-jet mass)² from pairs (1-2,1-3,1-4)
 - 3. select minimum (Z/W mass di-jet mass)² + (Z/W mass restjetmass)² from every pair
 - Set the rejection box at (81-101,81-101) for ZZ and (70-90,70-90) for WW

	ZZ(WW)	qqH,Z(qqH,W)		
1	47.4% (56.9%)	12.0% (9.2%)		
2	49.8% (57.1%)	13.7% (10.6%)		
3	49.7% (63.9%)	15.6% (11.7%)		

Adopt 1. for the following analysis

Signal efficiency with cut

decay mode	counts	ZZ cut	WW cut	both cut	(%)
qqH all eLpR	46,401	41,110	42,438	38,003	81.9%
qqH all eRpL	31,344	27,772	28,661	25,676	81.9%
H -> bb eLpR	25,734	22,830	23,761	21,271	82.7%
H -> bb eRpL	17,282	15,322	15,931	14,259	82.5%
H -> WW eLpR	10,656	9,292	9534	8,468	79.5%
H -> WW eRpL	7,235	6,315	6,518	5,764	79.7%
H -> ZZ eLpR	7,379	1,211	1,268	1,129	81.9%
H -> ZZ eRpL	941	824	870	774	82.2%
Η -> γ γ eLpR	172	161	160	152	88.2%
Η -> γ γ eRpL	123	113	114	106	86.3%
ZZ eLpR	129,454	70,147	110,049	60,482	46.7%
ZZ eRpL	59,676	32,529	50,165	27,724	46.5%
WW eLpR	1,682,990	1,474,368	737,943	661,742	39.3%
WW eRpL	116,661	101,945	50,375	45,235	38.6%

reconstruction for recoil mass

- Apply the rejection box to reduce WW/ZZ background (as shown in previous slide)
- We used "y-value clustering" to study higgs recoil mass.

$$y = \frac{2\min(E_i^2, E_j^2)(1 - \cos\theta_{ij})}{Q^2}$$

in this time, y-threshold fixed to 0.005

Significance with cut

Summary & Next step

- We started higgs recoil mass study using qqH channel at 250GeV ILC.
- BG study using forced 4-jets clustering.
 - ZZ reduced ~54%, WW reduced ~61%.
- Recoil mass study using y-value clustering.
 - signal efficiency with cut ~82%.
 - higgs recoil mass is clearly separated from BG.
 - The next step -> optimize cut.

optimize jet pairing with y-value. consider other BG (qqlv etc...) applying other cuts (jet pT,angular cuts etc.)