

TestBeam Activity of Scintillator ECAL Engineering Prototype

Annual meeting 17 / 12 / 2013 @ KEK Tomohisa Ogawa Shinshu-Univ.

Motivation of Developing Electronics for ScECAL.

- ScECAL Physics Prototype has been studied at FNAL 2008 and 2009, and shown good performance
- ScECAL group is at stage of development of the readout electronics to match it with the ILD ECAL module thickness.
 - to put 30 layers within ECAL thickness ~1850mm.
 - to fully integrate into active layers 10 million channels on ScECAL electronics.

<u>Developing Electronics for ScECAL.</u>

- ScECAL group and DESY AHCAL people has developed the electronics "EBU" which a readout chip is embedded at, based on AHCAL electronics "HBU".

- About "EBU"

- is embedded four readout chips "SPIROC" at one EBU. - can readout for 144 channels at one EBU.
- is equipped LEDs for each channel to gain calibration.
- is quarter the size of HBU.

- Same technology is used for both electronics.

- Synchronized data taking from EBU and HBU is expected to be achievable.

AHCAL layer : HBU(36cmx36cm)

ScECAL layer : EBU(18cmx18cm)

First TestBeam 2012 Oct.

- Using one prototype of EBU on one layer, first TestBeam was held on 2012 Oct.

LED gain calibration

MIP calibration

The channel which has no LED.

- Succeeded 50% out of 112ch, and 50% of channels had problems.

- 108(75%) channels out of 144ch could be measured MIPs.
- 25% of channels had problems

One professor said at last annual meeting,

- We can not use such almost bad electronics as the ILD ECAL. You must clear the reason.

First TestBeam 2012 Oct.

- The reasons of some bad channels.

- 2.

First TestBeam 2012 Oct.

- The reasons of some bad channels.

- 3. One controlled area of an ASIC has the problem on LED calibration mode.

MIP calibration

- 4.
The bending reflector strip film in front of MPPCs also made problems on the ASIC.

Tokusui Annual 2013

Signal lost in the middle of events and includes noise.

Channel/MemoryCell

The Purpose of TestBeam 2013 July.

→ First Multi-EBU setup in a beam environment (+HBU, +Si layer)

- Prepared two layers (Forward and Backward).

Forward layer consists of two EBUs (middle & terminal) Backward layer consists of one EBU.

- Need to confirm.

- Can we make two layers three EBUs synchronize?

- Additionally

- Can we make EBU synchronize with HBU?
- Can we make EBU synchronize with SiECal for Hybrid?

MIP Calibration.

- Two EBUs on two layers were calibrated with 3GeV electron beam.
- Applied pedestal subtraction and fit with Landau-Gaussian to estimate ADC/MIP factor.

- → On forward layer, about 95% channels could be calibrated (only blue channels).
- → On backward layer, about 84% channels could be calibrated (only blue channels).

MIP Calibration.

- ADC/MIP conversion factor ***** Include only blue channels.

On forward layer

average of ADC/MIP factor = 115.6 ADC

RMS/Mean = 22.9%

Backward layer ADC/MIP Forward layer ADC/MIP Reject Dead and Nois #118Chs.mean=159.7,RMS=29.7 50**-**#136Chs,mean=115.6,RMS=26.5 50H chip193 chip225 40 40⊢ chip194 chip226 30 chip195 30 chip227 chip196 chip228 20 20 Preliminary Preliminary 10 10 ᅂ 200 250 50 150 200 50 100 150 300 100 250 300 **ADC/MIP** conversion factor **ADC/MIP** conversion factor [ADC count] [ADC count]

On backward layer

RMS/Mean = 18.6%

average of ADC/MIP factor = 159.7 ADC

- Average values are little bit different between both layer despite we intended to set the same bias voltage for each channel. (set voltage ΔV = +3.0 from break down for all channels)
- → Need to clear the reason of this difference.

Deposit Energy on 5x5mm cells estimated by simple SSA.

- lateral EM shower shape.
 - We could observe the spread of shower according to the thickness of the absorbers.
 - Strip splitting algorithm also works well. And we could observe 5x5mm cell resolution.

***** Energy deposit on backward is smaller than on forward.

- → Small energy particles stop in forward layer and can't reach backward one.
- We compared the longitudinal shower shape.
 - \rightarrow We used 3 GeV electron.
- On physics prototype, max deposit occurred at 7 or 8 absorbers.
- On engineering prototype, max deposit occurred 6 or 7 absorbers.
- → For both case we do not reject noises and calibrate sufficiently.

Tungsten x 2

Tungsten x 7

Forward layer & Backward layer

SSA on 2 layers

Engineering

Physics Prototype

Hit Map with EBU/HBU Synchronized Data.

- Made EBU and HBU synchronize and plot the hit map.
- In case of 4 layers coincidence, we consider as being hit
- A diagonal area of HBU were set at high threshold
 - → Hits are concentrated in opposite diagonal area.
 - → On EBU, hits are concentrated in same diagonal area with fine resolution.

Hit Map of EBU

 \rightarrow We could observe correlation between EBU and HBU.

Summary & Outlook.

- Two ScECAL engineering prototype were tested at DESY with electron beam.
 - → we could calibrate about 95% and 84% channels with MIP calibration on forward layer and backward layer respectively.

- SSA works well.

- → We could confirm SSA works well for the lateral shower shape, but need to reject noise properly.
- Two ScECAL layers successfully worked with AHCAL layers in a "Real synchronization".
 - → We could observe the correlation between EBU and HBU.
 - → Next, We need to confirm the correlation between EBU and Si layers.

- Outlook for hardware R&D
 - Check Power pulsing with EBU.
 - Check real SSA.
 - Real Si-Sc-ECAL synchronization
 - Synchronization with more layers (Si+Sc, Sc+AHCal, Si+Sc+AHCal)

Back Up.

Transition of Backward Layer (employed 2012TB).

Chip228 4th row

<u>Tokusui Annual 2013</u>

Problem of Analog Memory Cells

- 各チャンネルはデータ記録用に16個のAnalogMemoryCellを持っている。
- 少し不安定で、条件により、Pedestalが動く。

ピンク mean ~ 255

Problem of Analog Memory Cells

Pedestal of each memory cells

Problem of Analog Memory Cells

- We apply pedestal subtraction on cell by cell instead of cell by cell analysis.

- Subtract pedestal from MIP for each event (for each memory cell), and extract factor.
- From these factor we estimate ADC/MIP conversion factor.

effect of pedestal subtraction

subtraction ch by ch and subtraction cell by cell match on around ± 20%

9

Pedestal Subtraction forward layer

ADC/MIP factor

scfactor_backward

scfactor_forward

scfactor_backward

<u>Photon Detection (Np.e./MIP)</u>

About photon detection.

The forward layer has a strip reflector in front of MPPCs. The backward layer does not have it.

 \rightarrow We want to confirm whether the difference of photon detection appear.

• Reflector in front of MPPC seems not to be better? Np.e./MIP is smaller.

Backward layer Np.e.

*we need 7p.e.

Np.e./MIP

to remove thermal noise and keep response for Bhabha.

Forward layer \rightarrow mean: 6.2

Backward layer \rightarrow mean: 7.2

There is the possibility that the voltage on backward is a little bit higher than forward. (gain calibration) \rightarrow Absorption efficiency of photon rises.

<u>Uniformity</u>

• About uniformity.

Changing the EBU position against beam, we take a position scan with 5mm grid (divided 9 sections).

Confirm a uniformity of a scintillator and in front of MPPCs.

→ Extract ADC count with 2 layer coincidence.

Position scan with beam

 \rightarrow Photon yield is larger at in front of MPPCs.

On forward layer, the channel behind which is corresponding to the section 8 turns off.

On backward layer, the data is only half of 1st layer. There is no data on section 0 and section 1.

LED Gain Calibration

- Gain calibration result at DESY.

No signal

couldn't calibrate on time.

→ On forward over 90%channels could be calibrated.

→ On backward near 90%channels could be calibrated.

(except problematic area.)

- ADC/p.e.

 $\Delta V = +3.0$ from break down. Same settings on both layers.

Gain (d-value).

Forward layer → mean: 18.8 RMS: 2.1

Backward layer \rightarrow mean: 21.6 RMS: 2.3

* Although we set same bias voltage, the gain seems to be little different

Forward layer d-value Backward layer d-value

Forward layer result Backward layer result

Backward lay<mark>er result</mark> @Shinshu

Applying Simple SSA

strip scintillator ECAL requires a sophisticated algorithm named SSA (Strip Splitting Algorithm) to produce square cells and achieve high granularity 5x5mm.

- We made shower events with Tungsten absorbers.

Changing the number of tungsten absorbers.

- \rightarrow We try to measure the spread of EM shower like a pseudo multi layer.
- Try to calculate Cell Energy by using simple SSA.

 $e_i = E_n \cdot \frac{A_i}{\sum_{i=1}^9 A_i}$

Cell energy with SSA

 A_9

 A_1

 E_n

X

N of MIPs of one strip

on the forward layer

Beam Test of Scintillator ECAL Engineering Prototype

- CALICE group has developed the electronics "EBU"(scintillator ECAL Base Unit) which a readout chip is embedded at, based on analog HCAL electronics "HBU".
- SPIROC ASIC is used for readout and it has 16 memory cells at each channels to store data.
- We CALICE group tested this EBU engineering prototype and found out these memory sells are not stable (and bug of program).

memory number 0,1,2....15

- Actually we need to analysis cell by cell. but because statistical reduce, we use a sum-up value.

26

hiah

100

150

300

350

X Axis

thresho

- Also we tried testing synchronization with analog HCAL layer for next step.

Hit rate \rightarrow

Hit concentrate on diagonal area. (In case there is 4 layers coincidence)

