

1

#### ScECAL activity in 2013 18th December 2013 K. Kotera, Shinshu University

#### Contents

- 1. Group,
- 2. Brief introduction of ScECAL for new comers,
- 3. Reconstruction and performance
- 4. Hardware developing
  - Realization in ILD,
  - MPPC/scintillator unit
  - MPPC development
- 5. Plan in future
- 6. Summary.

# Group

Kungpook National (Korea)

A. Khan $\rightarrow$ got PhD., D. Kim, M. Kim, D. Kong, S. Uozumi,

Nippon Dental:

H. Ono,

Shinshu:

R. Hamasaki, K. Kasama, T. Ogawa, T. Takeshita, L. Teh, R. Terada, T. Tsuzuki, and K.Kotera,

Tokyo:

S. leki, W. Ootani,

Tsukuba:

T. Honda, A. Murasame, K. Yoshida, F. Ukegawa

Kyushu and ICEPP study on SiECAL, and hybrid together. Those all join CALICE group.

### a brief introduction of ScECAL

#### Why we study Sc-strip ECAL (again for new comers)

- 1. Requirements:
  - a. 5 mm x 5 mm lateral segmentation
     robustness for ~ 10<sup>8</sup> channels.
  - b. Low cost.
- 2. Drastic development of the SiPM(MPPC) in this decade,
  - high gain, small package, no effect from magnet
- 3. Idea of strip segmentation;

the strips in odd layers are aligned orthogonally to those in the even layers.  $10^8 \rightarrow 10^7$ 

 Timing measurement with resolution < 1 ns.</li>



# Strip ScECAL in ILD



#### **Reconstruction and performance**

#### **Reconstruction of Strip ECAL** Algorithm to extract 5x5mm<sup>2</sup> from strip cells (SSA)



SSA makes JER of strip ECAL close to 5 x 5 mm<sup>2</sup> tile ECAL Difference is only 0.2-0.3%.

# Improve more



Alternately replacing with 5x5mm<sup>2</sup> tile layers.

note: merit of orthogonal setting of strip layers does not work.

5x5mm<sup>2</sup> tile Si layer is one of hybrid ECAL option

Alternately replacing with large tile layers.



10x10 or 15x15mm<sup>2</sup> is reasonable to make pure scintillator ECAL

### large tile-layers between strip-layers



ScECAL alternately replaced strip layers with  $10 \times 10 \text{ mm}^2$ layers has similar energy resolution to  $5 \times 5 \text{ mm}^2$  tile ScECAL (also DBD result with SiW ECAL) at E<sub>jet</sub>  $\leq 100 \text{ GeV}$ , only 0.1% degrades at high energy.

#### Performance on $\pi^0$ reconstruction



With tile layers, performance of ScECAL is more promising.

#### Realization of ScECAL in ILD - Technological prototype -



#### **Technological prototype**





#### Beam test at DESY July 2013

#### Front-end is embedded between layers



Ssa Energy Weight display



13



#### Scintillator/MPPC unit

### Design is not yet fixed

Thickness of scintillator:

Reduction of total thickness : for the EM shower spread and also cost. Thickness of readout baseboard : limited with industrial technology. thinner scint. is better if we can make it w/o performance degrading. Current effort: 1 mm thick scintillator tech. instead of 2 mm.

MPPC scintillator coupling:

Uniformity Photon yield Dead volume

We are gradually close to the best method

#### **Reduction of thickness**

- 1 mm thick corresponds to ~0.5 mm thick of Si sensor because of difference of the thickness of the baseboard.
   Sc: 1.2 mm, Si: ~2mm
- Ideal photon yield optimized between noise ratio and saturation is 7 p.e.
- Current design 45x5x2mm<sup>3</sup>, has ~ 7 p.e. yield at DESY TB 1 mm thick reduces factor 2/3 ▶ need more p.e.



Tokyo group measured ~1.6 times larger photon yield with beta source than Shinshu with different scintillator material.

We are cross-checking together.

# Scintillator / MPPC connection

- MPPC sensor area > 0.25 mm x 4 mm for 1mm thick scintillator,





dead volume from MPPC

#### No dead volume from MPPC



# Tapered wedge has good uniformity and photon yield

- From the bottom with wedge by W. Ootani,



good photon yield and uniformity<sup>20</sup>

### Wedge and long shape MPPC



#### Wedge and long shape MPPC



#### **MPPC** development

### **MPPC** development

previous 1600 pix MPPC

previous 2500 pix MPPC

previous 4489 pix MPPC



Low noise, low temp. dependence, high PDE 24

### **MPPC** development



Low noise, low temp. dependence, high PDE

# Next plan

**Design:** 

- Fix scintillator/MPPC design in next year
- Study on combination of 10000 pix MPPC and scintillator
- Study of thinner readout board

Technological prototype:

- robust readout electronics
- Power pulsing technique
- Performance in ILD (JER, particle separation, physics)

Effect from:

noise, saturation of MPPC, non-uniformity of scintillator strip, and dead channels

should be studied

Hybrid construction with SiECAL group

Mass production

We started contact with scintillator makers, a tungsten maker and a company who makes machines for chewing gam wrapping.

More application Strip AHCAL by using SSA,

### Summary

- We are developing a scintillator strip ECAL for linear colliders with scintillator strips and MPPC.
- Performance in ILD is already promising with SSA.
  - Options for higher goal,
    - alternately replacing w/ 5x5mm<sup>2</sup>⇒hybrid,
    - alternately replacing w/ 10x10mm<sup>2</sup>⇒pure ScECAL,
- Efforts for reality are exerted to,
  - detail optimizations of Sc./MPPC connection to get higher goal and we are gradually getting the goal,
  - robust readout electronics.
- In next step,
  - we will fix detail design,
  - test beam:
    - the power pulsing technology,
    - hybrid ECAL.

Paper: DESY  $\rightarrow$  submitted to NIM, FNAL  $\rightarrow$  under brushing up. 27

#### Back up

### No dead volume from MPPC



### Persistent challenge to spattering

#### Reflector film



- Already enough reflection,
- a little complex procedure to make,

#### Spattering



- So far, not enough reflection,
- Once we resulted that spattering method does not work!
- help easy construction,
- One more challenge with 200 nm silver alloy,
   ongoing (at LCWS),

#### Persistent challenge to spattering

#### Reflector film



- Already enough reflection,
- a little complex procedure to make,



#### Spattering



- So far, not enough reflection,
- Once we resulted that spattering method does not work!
- help easy construction,
- One more challenge with 200 nm silver alloy,
  ongoing (at LCWS),

# Jet energy resolution of the case alternately replaced with tile layers



- alternately replacing with tile layers have significant improvement of jet energy resolution,
- effect of 10x10 mm<sup>2</sup> layers
   is the same as 5x5 mm<sup>2</sup>
   layers,
- effect of 15x15 mm<sup>2</sup> layers is not so large, although the plot is not shown here.

#### Challenges to be overcome

#### MPPC/Scintillator Unit(1) Thickness 2mm ▶ 1mm, Thinner Ecal ▶ Short radius ▶ Small Magnet ▶ Low cost.

Confirm Energy resolution of 1 mm thick scintillator,

- photon yield ( > 7 p.e.),

current design 45x5x2mm<sup>3</sup>, has ~ 7 p.e. yield at DESY TB

1 mm thick reduces factor 2/3 ▶ need more p.e.









: the number of reflection times is doubled in 1mm T scintillator ▶ 2/3 ~ (ref.ratio)^(ref times)

#### Challenges to be overcome **Thinner EBU**



36 x 4 channels / EBU 4 chips / EBU

**0.6** mm

Compress

grid array

Ball

**A** 

' naked ASIC

N

1.8 mm ▶ 1.2 mm req.



#### Study on ghost clusters with $\mu$ - $\mu$



#### How to do SSA with large tiles



#### Default design of ScECAL in Mokka and changed film thickness of reflector



In this study thickness of reflector is changed to: 0.107 mm, 0.207 mm and 0.407 mm. keeping;

- width of scintillator + reflector to 5.14 mm (default), replacing a part of scintillator with excess of reflector film,
- thickness of scintillator = 1.0 mm,
- thickness of scintillator + reflector + PCB = 1.914 mm, replacing a part of PCB with excess of reflector film,

very ideal design in order only to see effect of side dead vol.

#### Effect of reflector thickness



There is no significant deterioration of jet energy resolution due to the dead volume comes from reflector thickness at least up to 0.2 mm.