ILC Physics

a theorist's perspective

Koji TSUMURA (Kyoto from Dec 1st) Toku-sui annual workshop 2013 KEK, Dec. 17-19, 2013

Plan of my talk

STATUS Where are we? New Era of the SM What we need to do? Physics Beyond the SM Why? Where is it? ILC Physics What do we do?

Status Where are we ?

In summary

We have observed a new boson with a mass of 125.3 ± 0.6 GeV at 4.9 σ significance !

A new particle is found !!

Higgs search update 04.07.2012

2013/12/11 ILC Toku-sui ann. WS 2013

<u>2013</u>

3 decay channels are seen (≥3σ, each) Spin 0 is favored

$H \rightarrow WW$

2013/12/11 ILC Toku-sui ann. WS 2013

The Review of Particle Physics (2013)

So far, so GOOD.

New Era of the SM started What we need ?

Precision test

Higgs:

QCD:

2013/12/11 ILC Toku-sui ann. WS 2013

Precision test

W, Z, h, t, b

W, Z M

New Physics

EW precision (LEP)

2013/12/11 ILC Toku-sui ann. WS 2013

EM:

EW:

QCD:

Higgs:

1227

"Deviation" in $\rho \rightarrow \text{Predict } M_t$

2013/12/11 ILC Toku-sui ann. WS 2013

"Deviation" in $\rho \rightarrow \text{Predict } M_h$

pQCD ≥1TeV (LHC)

2013/12/11 ILC Toku-sui ann. WS 2013

<u>SM is successful</u>

QCD:

2013/12/11 ILC Toku-sui ann. WS 2013

Koji TSUMURA

Why not? Higgs precision (ILC)

Higgs force (Origin of mass) $h \rightarrow v + h$

Why Higgs?

"Energy Frontier" study for Snowmass 2013

Introduction

the discovery of the Higgs boson has changed our viewpoint ...

1st, the Higgs boson completes the particle spectrum of the SM. It is clear now exactly what the model does not explain.

2nd, one of the key mysteries concerns the Higgs boson itself.

3rd, the Higgs boson itself give us <u>a new experimental approach</u>.

We are here !!

This is a new tool to probe New Physics scale.

2013/12/11 ILC Toku-sui ann. WS 2013

What is the SM?

Matter contents \rightarrow quarks, lepton, Higgs (completed) Gauge symmetry \rightarrow gluon, W, Z, γ (tested) Renormalizability \rightarrow loop corrections (tested)

All parameters are now fixed!!

Not yet Tested !!

What is the origin of mass ?

Higgs mechanism ? Fermion Mass hierarchy, mixing, CP violation ?

$$\Phi^0 \to (v+h)/\sqrt{2}$$

 $--\kappa^{N}m_{V}^{2}/v \quad --- \begin{pmatrix} m_{f}/v & --- \begin{pmatrix} m_{h}^{2}/v \\ m_{h}^{2}/v \end{pmatrix}$

2013/12/11 ILC Toku-sui ann. WS 2013 Koji TSU

coupling	Baseline			LumiUP		
Δg/g	250 GeV	+ 500 GeV	+ 1 TeV	250 GeV	+ 500 GeV	+ 1 TeV
HZZ	1.3%	1.0%	1.0%	0.61%	0.51%	0.51%
HWW	4.8%	1.2%	1.1%	2.3%	0.58%	0.56%
Hbb	5.3%	1.6%	1.3%	2.5%	0.83%	0.66%
Hcc	6.8%	2.8%	1.8%	3.2%	1.5%	1.0%
Hgg	6.4%	2.3%	1.6%	3.0%	1.2%	0.87%
Ηττ	5.7%	2.3%	1.7%	2.7%	1.2%	0.93%
Ηγγ	18%	8.4%	4.0%	8.2%	4.5%	2.4%
Ημμ	-		16%	- 11 A	-	10%
Htt		14%	3.1%		7.8%	1.9%
Γο	11%	5.0%	4.6%	5.4%	2.5%	2.3%
Br(Inv)	<0.95%	<0.95%	<0.95%	0.44%	0.44%	0.44%
HHH	-	83%	21%		46%	13%

2013/12/11 ILC Toku-sui ann. WS 2013

M_h as an input

<u>M_t as an input</u>

2013/12/11 ILC Toku-sui ann. WS 2013

Need Theorist's effort M_t as an input

$\frac{M_{t} \text{ as an input}}{16\pi^{2}\mu \frac{d\lambda}{d\mu}} = 24\lambda^{2} - 6y_{t}^{4} + \cdots$

To be or not to be.

Our vacuum may be unstable

To confirm our safety, we need more accurate M_t.

2013/12/11 ILC Toku-sui ann. WS 2013

Beyond the SM Why? Where is it?

What is the Beyond SM ?

The SM is now completed.

What is the mechanism for charge quantization? GUT? PQ sym.? Why does the strong interaction not break CP? What is the correct theory of neutrino mass? Seesaw? What is the mechanism that led to baryon asymmetry? What is dark matter? WIMP? Axion? Cosmological const? What is dark energy? What was the mechanism of cosmic inflation? Inflaton? TOE? How are the four forces and matter unified ? How can gravity be quantized ? String?

viXtra.org

No Principle at all !!

Why $\mu^2 < 0$? Are there any underlying dynamics ?

Fine-tuning $\delta m_h^2 \approx \Lambda^2$? Why is the Higgs so light?

Minimal Higgs sector ?

Why does the nature choose one doublet ?

 $\mathcal{L} = -\left[+\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2 \right] \\ + \left[+Y_{ij} F_L f_R \Phi + \text{H.c.} \right]$

Dynamical Symmetry Breaking

Why $\mu^2 < 0$? Are there any underlying dynamics ?

No reason!!

<u>Dynamics</u>

[BCS theory for superconductors] Attractive force \rightarrow cooper-pair \rightarrow symmetry breaking [Chiral symmetry breaking] QCD $\rightarrow q\overline{q}$ condensate \rightarrow symmetry breaking

EW Symmetry Breaking

 μ^2 <0 is induced from radiative corrections (dynamically)

EW Symmetry Breaking

Why $\mu^2 < 0$? We and interaction is needed No reason! is induced from radiative corrections (dynamically)

Is the Higgs mass natural ?

Fine-tuning $\delta m_h^2 \approx \Lambda^2$? Why is the Higgs so light ? $m_h^2 <\!<\!<\!<\!\Lambda^2$ $\mathbf{M}^{\mathbf{2}}_{\mathrm{GUT}} \simeq (\mathbf{10^{16}~GeV})^{\mathbf{2}}$ $(125\,\mathrm{GeV})^2$

Quantum corrections to the Higgs mass

Unnatural (cancellation w/ counter terms)

Is the Higgs mass natural?

Fine-tuning $\delta m_h^2 \approx \Lambda^2 ?$ Why is the Higgs so light ?

SUSY holds naturally light Higgs mass

Is the Higgs mass natural?

Fine-tuning $\delta m_h^2 \approx \Lambda^2$ Why is the Higgs so light? eeded

There can be mixing with partners of Gauge bosons, top quarks. Precision EW and top studies are necessary.

Non-minimal Higgs sector ?

Most likely to be a doublet, but possible mixing w/ other multiplets

Additional Higgs bosons are introduced !! H, A, H+, H++, …

SM-like Higgs couplings deviate from SM

Neutrino mass

f
Singlet
Additional doublet
Triplet
 SUSY

Extended Gauge sym.

Septet

 $\mathcal{L} = + \left| D_{\mu} \Phi \right|^{2} - \left[+ \mu^{2} \Phi^{\dagger} \Phi + \lambda \left(\Phi^{\dagger} \Phi \right)^{2} \right] + \left[+ Y_{ij} F_{L} f_{R} \Phi + \text{H.c.} \right]$

2013/12/11 ILC Toku-sui ann. WS 2013

At least 1 % precision for M>1TeV (M is a new Higgs scale) [pre-factor: loop suppression, tan β enhancement, non-decoupling effect] 1 2013/12/11 ILC Toku-sui ann. WS 2013 Koji TSUMURA

Model discrimination

 $h\overline{f}f$

 $|hb\overline{b}|$

|hVV|

 $h\tau\bar{\tau}$

2013/12/11 ILC Toku-sui ann. WS 2013

So far, No New Physics.

SUSY confronts LHC data

2013/12/11 ILC Toku-sui ann. WS 2013 Koji TSUMURA

41

Light or Heavy SUSY?

New Physics Zoo

ILC Physics

ILC Physics = New Physics

Any Deviations

Precision Higgs/top/EW study

- Model independent determination of Higgs couplings (%-level) •
 - Invisible(exotic) Higgs decay / Total width •
 - Precise determination of M_W (few MeV) •
 - Improvement of Triple Gauge coupling measurement •
 - Precise determination of M₊ (100 MeV) •
 - Precision measurement of top coupling (incl. rare decay)
 - Improvement of α_s @ Giga-Z

Higgs self-coupling measurement (experimental reconstruction of Higgs potential)

Search for New Particles in LHC blind spots

- Light EW new particle (Higgsino, new Higgs, DM)
 - Follow up any discovery @ LHC

Summary

Any Deviations = New Physics

> Ono Kawada

Tian

Calancha

Precision Higgs/top/EW study

Model independent determination of Higgs couplings (%-level)

- Invisible (exotic) Higgs decay / Total width Watanuki
 - Precise determination of M_W (few MeV) Ishikawa
- Improvement of Triple Gauge coupling measurement
 - Precise determination of M_t (100 MeV) ^{Horiguchi}
- Precision measurement of top coupling (incl. rare decay)
 - Improvement of α_s @ Giga-Z

• Higgs self-coupling measurement ^{Kurata} (experimental reconstruction of Higgs potential)

Search for New Particles in LHC blind spots

- Light EW new particle (Higgsino, new Higgs, DM) Tanabe Mori
 - Follow up any discovery @ LHC

Summary

SummaryPlan of my talk

STATUS Where are we? New Era of the SM What we need to do? Physics Beyond the SM Why? Where is it? ILC Physics What do we do?

A Higgs boson is confirmed. No New Physics, so far.

Precision measurement of h, t, W/Z. (Direct search for New Physics). Indirect search for New Physics.

Higgs forces are totally unknown !! SM is NOT satisfactory… (v, DM, DE, Baryogenesis, inflation, GUT, string,…)

We don't know the scale.

Determination of New Scale is a key issue @ ILC.

2013/12/11 ILC Toku-sui ann. WS 2013 Koji TS

Thank you for your attention

