Simulation Study of the Hybrid ECAL for ILD

Tokusui Annual Meeting @KEK 17th-19th December, 2013 Hiraku Ueno (Kyushu University)

On behalf of ILD-ECAL group

Contents

- Motivation for the Hybrid ECAL
- Calibration, Evaluation
- Jet Energy Resolution
 - Same Absorber Thickness
 - Same Module Thickness
 - Alternating Hybrid
- Understanding Jet Energy Resolution
- Summary

ILD ECAL Candidates

Silicon pads (Si ECAL)

- ✤ 5mm x 5mm cells
- sood performance for PFA
- large fraction of detector cost

Scintillator strips +MPPC (Sc ECAL)

- * 45mm x 5mm orthogonal & SSA
 --> 5mm x 5mm spatial resolution
- * reasonable cost
 * about bite
- * ghost hits

An option to make the ECAL at a lower cost while keeping performance as much as possible would be mixture of silicon and scintillator-strip layers.

ECAL Calibration

- Calibration constants should be determined for silicon layers and scintillator layers respectively.
 - calibrated using 10GeV photon.

Hcal Energy [GeV]

12

10

• use 10GeV muon for MIP calibration.

Hybrid ECAL Evaluation

- We evaluated energy dependence and Sc:Si ratio dependence.
- software version : ilcsoft v01-16-02 with trunk version of some processors (Data were generated with ilcsoft v01-15)
- $e^+e^- \to q\bar{q}$ (q=u,d,s, $\sqrt{s}=91, 200, 360, 500 \text{GeV}$)
- only barrel region $|\cos(\text{thrust angle}) < 0.7|$ for evaluation.

JER of same absorber thickness

Energy Dependence

- JER difference between SiECAL and ScECAL is ~0.5% at 180, 250GeV.
- Hybrid(Si20+Sc8) is about medium between SiECAL and ScECAL.

- Scintillator performance becomes much better than that with old version
- JER becomes worse gradually.

JER of same module thickness

Energy Dependence

- JER difference between SiECAL and ScECAL is ~0.4% at 180, 250GeV
- The performances of ECALs contains Sc-layers more than half are same at 250GeV.
- Hybrid(Si22+Sc8) is about medium between SiECAL and ScECAL

- JER degrades not so much up to 180GeV jet.
- For 250GeV, Hybrid(Si16+Sc14) is almost same performance as ScECAL.

alternating hybrid

- to help SSA and resolve ghost hits
- double layers/single layer alternating
- Data were reproduced by newer version of Mokka
- Sc thick = **1.0mm**, Si thick = **0.5mm**

	W thickness (in20,out9)	Module thickness (mm)	
SiECAL(30)	2.1/4.2	185.0	
Hybrid(<mark>Sil6Scl4</mark>) [not alternate]	2.1/4.2	190.8	
Double layers Alternate(<mark>Sil 6Scl 4</mark>)	2.1/4.2	190.8	
Single layer Alternate(<mark>Si16Sc14</mark>)	2.1/4.2	190.8	
ScECAL(30)	2.1/4.2	197.4	

JER of alternating hybrid

- Standard PandoraPFA reconstruction
- The difference between SiECAL and ScECAL is ~0.2% at 250GeV.
- Hybrid(Si16+Sc14), Hybrid(Double Alt.) and Hybrid(Single Alt.) are same performance as SiECAL up to 180GeV.
- Alternating configurations are slightly better than Hybrid(Si16+Sc14)
- Both alternating hybrids look promising for the best cost-performance.

Single alternating Hybrid will be used mainly for further study

Understanding JER

- We are trying to understand each JER by cheating MC information
- Data are generated with newer version of Mokka
- Cheating with SSA has a problem
 - use 5x5mm² scintillator for Hybrid[Si16+Sc14] and ScECAL

SiECAL

• 30layers, W=2.1mmx20/4.2mmx9, w/o stand alone photon clustering

Hybrid[Si16+Sc14] (5x5mm² cells)

• 30layers, W=2.1mmx20/4.2mmx9, w/o stand alone photon clustering

Hybrid with Sc-strip :Standard PandoraPFA Hybrid with Sc-cell : Standard Pandora PFA Sc-cell ECAL : photon Sc-cell ECAL : photon, n, KOL Sc-cell ECAL : Perfect Pattern Recognition

The difference between Sc-strip and Sc-cell is negligible at 45GeV and 100GeV jet.

The tendency is same as that of SiECAL.

ScECAL (5x5mm² cells)

• 30layers, W=2.1mmx20/4.2mmx9, w/o stand alone photon clustering

Sc-strip ECAL : Standard PandoraPFA Sc-cell ECAL : Standard Pandora PFA Sc-cell ECAL : photon Sc-cell ECAL : photon, n, KOL Sc-cell ECAL : Perfect Pattern Recognition The difference between ▲ and ※ is caused by ghost and SSA uncertainty

All three ECALs are almost identical if pattern recognition is done perfectly.

Summary

- We are studying the hybrid option to make ILD ECAL with a lower cost while keeping performance as much as possible.
- evaluated various hybrid configurations with newer version of ilcsoft
 - same absorber thickness ...degrades gradually
 - same module thickness ... 30% of Sc-layers is medium between SiECAL and ScECAL
 - alternating hybrid ... same performance as SiECAL up to 180GeV
 - They are being reevaluated with the data made with newer Mokka
- We are trying to understand the resolution,
 - will enable to cheat MC information using SSA
 - will investigate the cause of JER difference, and consider measures to improve

JER v01-15 (Same Absorber Thickness)

Energy Dependence

- can keep performance with less silicon layers at low energies.
- no big difference among SiECAL, Hybrid(Si14+Sc14), Hybrid(Si20+Sc8)

Ratio Dependence

- same performance at 45GeV jet
- becomes worse above 50%
- not degrade up to 50% of scintillator layers

Photon Energy Resolution

same absorber thickness

	σ stoc.	σ const.
SiECAL(30)	16.9±0.08%	1.70±0.05%
Hybrid(Si22+Sc8)	16.6±0.08%	1.52±0.05%
Hybrid(Si16+Sc14)	16.4±0.04%	1.36±0.05%
Hybrid(Si10+Sc20)	15.4±0.07%	1.65±0.05%
ScECAL(30)	14.7±0.07%	1.83±0.03%

JER v01-15 (Same Module Thickness)

- performance looks to depend on the number of silicon layers all over the energies
- Hybrid(Si16+Sc14) is about medium between SiECAL and ScECAL at high energies.

Ratio Dependence

- Performance becomes worse almost linearly as scintillator layers increase
- not so degrade up to ~30%

Photon Energy Resolution

same module thickness

	σ stoc.	σ const.
SiECAL(30)	17.0±0.08%	1.65±0.05%
Hybrid(Si22+Sc8)	17.0±0.08%	1.50±0.05%
Hybrid(Si16+Sc14)	16.7±0.08%	1.55±0.05%
Hybrid(Si10+Sc20)	16.6±0.08%	1.56±0.05%
ScECAL(30)	16.0±0.07%	1.77±0.04%

JER v01-15 (Alternating Hybrid)

- alternating is much better than ScECAL
- almost same as SiECAL and Hybrid[Si14+Sc14]

- alternating is much better than ScECAL
 - medium between SiECAL and ScECAL
 - better than Hybrid[Si16+Sc14] at 250GeV

Single layer alternating will be evaluated

Absorber Thickness Dependence

• v01-15

Sc thickness = 1.0mm Si thickness = 0.5mm

		Silicon 16layers Scintillator 14layers	
	W thickness (all 29 layers)	Total Radiation Length (X ₀)	
Hybrid(Sil6Scl4)①	I.4	11.6	
Hybrid(<mark>Sil6Scl4</mark>)②	2.I	17.4	
Hybrid(<mark>Sil6Scl4</mark>)③	2.8	23.2	
Hybrid(<mark>Sil6Scl4</mark>)④	3.5	29.0	P C L
Hybrid(Sil6Scl4)5	4.2	34.8	move outside

JER v01-15(Absorber thickness dependence)

- 1.4mm is worse all over the energy
 - seems to be shower leakage
- 3.5mm seems enough to absorb EM showers

- performance becomes worse above 3.0mm at 45GeV
- ~ 2.8 mm ($\sim 24X0$) looks best for 100 ~ 250 GeV jet

hybrid with Sc-tiles(15x15mm)

Scintillator Thickness Difference

Photon Energy Resolution

ECAL Performance (photon 1~50GeV)

ScThick	σ stat	σ const
0.5mm	19.04%	2.19%
1.0mm	16.84%	1.71%
2.0mm	15.17%	1.72%
3.0mm	14.26%	1.56%

Jet Energy Resolution

Improvements for ScECAL

Birk's Law MIP threshold after SSA

