Current Status and Future Plan of Hybrid ECAL Simulation

ILD ECAL Meeting @The Univ. of Tokyo 16th-17th November, 2013 Hiraku Ueno (Kyushu University)

Current Status

- Jet Energy Resolution Evaluation
 - sensitive layer dependence
 - same absorber thickness
 - same module thickness
 - alternating structure
 - tungsten structure dependence
- understanding resolution by cheating

Updated Issues

- ilcsoft v01-16-02 (← v01-15)
 - with recent version of Pandora Processors
- switched new digitizer (includes time window) for Sc-layers
- Calibration of MIP threshold for virtual cells after SSA

Updated Issues

- ilcsoft v01-16-02 (← v01-15)
 - with recent version of Pandora Processors
- switched new digitizer (includes time window) for Sc-layers
- Calibration of MIP threshold for virtual cells after SSA

	W thickness (in20,out9)	Module thickness (mm)
SiECAL(30)	2.1/4.2	185.0
Hybrid(<mark>Si22Sc8</mark>)	2.1/3.9	185.6
Hybrid(<mark>Sil6Scl4</mark>)	2.1/3.6	185.4
Hybrid(<mark>Si 0Sc2</mark> 0)	2.1/3.3	185.2
ScECAL(30)	2.1/ <mark>2.9</mark>	185.7

RMS90(E_i) / Mean(E_i) [%]

4.5

3.5

3

SiECAL(2.1x20/3.5x7)

15 ScECAL(2.1x20/3.5x7) 16-02 ScECAL(2.1x20/3.5x

Updated Issues

- ilcsoft v01-16-02 (← v01-15)
 - with recent version of Pandora Processors
- switched new digitizer (includes time window) for Sc-layers
- Calibration of MIP threshold for virtual cells after SSA

	W thickness (in20,out9)	Module thickness (mm)
SiECAL(30)	2.1/4.2	185.0
Hybrid(<mark>Si22Sc8</mark>)	2.1/3.9	185.6
Hybrid(<mark>Sil6Scl4</mark>)	2.1/3.6	185.4
Hybrid(<mark>Si 0Sc2</mark> 0)	2.1/3.3	185.2
ScECAL(30)	2.1/ <mark>2.9</mark>	185.7

Future Plan

- evaluate more configurations
 - single layer alternating
 - two stacks tungsten structure
- inner radius dependence
- more realistic simulation
 - saturation
 - non-uniformity
 - dead strips
 - etc.

Transition to the New Digitizer

J.Marshall

EcalToHadGeV Calibration

SiECAL(30)[2.1x20/4.2x9] with ILDCaloDigi, 20ns timing cut

Calibration is done using 10GeV KL

Contents

- Motivation for the Hybrid ECAL
- Calibration, Evaluation
- Jet Energy Resolution
 - Same Absorber Thickness
 - Same Module Thickness
 - Alternating Hybrid
- Understanding Jet Energy Resolution
- Summary

ILD ECAL Candidates

Silicon pads (Si ECAL)

- ✤ 5mm x 5mm cells
- sood performance for PFA
- large fraction of detector cost

Scintillator strips +MPPC (Sc ECAL)

- * 45mm x 5mm orthogonal & SSA
 --> 5mm x 5mm spatial resolution
- * ghost hits

An option to make the ECAL at a lower cost while keeping performance as much as possible would be mixture of silicon and scintillator-strip layers.

ECAL Calibration

- Calibration constants should be determined for silicon layers and scintillator layers respectively.
- calibrated using 10GeV photon, and confirmed our method.
- use 10GeV muon for MIP calibration.

Hybrid ECAL Evaluation

- We evaluated energy dependence and Sc:Si ratio dependence.
- software version : ilcsoft v01-16-02 with trunk version of some processors (Data were generated with old version of Mokka)
- $e^+e^- \to q\bar{q}$ (q=u,d,s, \sqrt{s} =91, 200, 360, 500GeV)
- only barrel region (cos(thrust angle)<0.7) for evaluation.

Jet Energy Resolution

Energy Dependence

- JER difference between SiECAL and ScECAL is ~0.5% at 180, 250GeV.
- Hybrid(Si20+Sc8) is about medium between SiECAL and ScECAL.

Ratio Dependence

- Scintillator performance becomes much better than that with old version
- JER becomes worse gradually.
- The performance doesn't degrade up to 50% of Scintillator layers up to 100GeV jet.

Jet Energy Resolution

Energy Dependence

Ratio Dependence

- Scintillator performance becomes much better than that with old version
- JER becomes worse gradually.
- The performance doesn't degrade up to 50% of Scintillator layers up to 100GeV jet.

Jet Energy Resolution

Energy Dependence

- JER difference between SiECAL and ScECAL is ~0.3% at 180, 250GeV
- The performances of ECALs contains Sclayers more than half are same at 250GeV.
- Hybrid(Si22+Sc8) is about medium between SiECAL and ScECAL

Ratio Dependence

- JER degrades not so much up to 180GeV jet.
- The difference between SiECAL and ScECAL or Hybrid(Si16+Sc14) is ~0.3% at 250GeV

alternating hybrid

to help SSA and resolve ghost hitsdouble layers alternate

same absorber thickness

same module thickness

	W thickness (in20,out9)	Module thickness (mm)		W thickness (in20,out9)	Module thickness (mm)
SiECAL(<mark>30</mark>)	2.1/3.5	165.4	SiECAL(30)	2.1/4.2	185.0
Hybrid(<mark>Si 6Sc 4</mark>) [not alternate]	2.1/3.5	185.2	Hybrid(<mark>Sil6Scl4</mark>) [not alternate]	2.1/3.6	185.4
Double layers Alternate(<mark>Sil6Scl4</mark>)	2.1/3.5	185.2	Double layers Alternate(<mark>Sil6Scl4</mark>)	2.1/3.6	185.4
ScECAL(30)	2.1/3.5	205.0	ScECAL(30)	2.1/2.9	185.7

Performance of alternating hybrid

- For both case,
 - worse than half and half at low energies
 - a little bit better at high energies

Single layer alternating will be evaluated

Understanding ECAL Performance

- the contributions to JER by cheating MC information
- Data are generated with trunk version of Mokka

Sc = 1.0mm	W thickness (in20,out9)	Module thickness (mm)
SiECAL(<mark>30</mark>)	2.1/4.2	185.0
Hybrid[Si16+Sc14] Double Alternating	2.1/4.2	190.8
ScECAL(30)	2.1/4.2	197.4

Understanding ECAL Performance

- switched standard PFA algorithm to MC cheating version
- We are evaluating three cases,
 - cheat photon
 - cheat photon & Neutral Hadron (neutron, K_L)
 - Perfect Pattern Recognition

	45GeV	100GeV	180GeV	250GeV
Photon	0.10%	0.22%	0.32%	0.43%
Neutral Hadron	0.22%	0.25%	0.27%	0.35%
Others	0.49%	0.35%	0.53%	0.60%
Total Confusion	0.77%	0.82%	1.12%	1.68%

SiECAL(30)

Understanding ECAL Performance

- Cheating with SSA has problem.
 - only PerfectPFA for Hybrid and ScECAL
- If pattern recognition is done completely, JERs are almost same.
- Each contribution to JER of Hybrid and ScECAL will be investigated.

Absorber Thickness Dependence

• v01-15

Sc thickness = 1.0mm Si thickness = 0.5mm

		-	Silicon I Glayers Scintillator I 4 layers
	W thickness (all 29 layers)	Total Radiation Length (X ₀)	
Hybrid(<mark>Sil6Scl4</mark>)①	I.4	11.6	
Hybrid(<mark>Sil6Scl4</mark>)②	2.1	17.4	
Hybrid(<mark>Sil6Scl4</mark>)③	2.8	23.2	
Hybrid(<mark>Sil6Scl4</mark>)④	3.5	29.0	P C A L
Hybrid(<mark>Sil6Scl4</mark>)5	4.2	34.8	move outside

JER v01-15(Absorber thickness dependence)

- 1.4mm is worse all over the energy
 - seems to be shower leakage
- 3.5mm seems enough to absorb EM showers

W thickness Dependence

- performance becomes worse above 3.0mm at 45GeV
- ~ 2.8 mm ($\sim 24X0$) looks best for 100 ~ 250 GeV jet