AHCAL electronics.

Status Module Production an Power Pulsing

Mathias Reinecke

AHCAL main meeting DESY, Dec. 10th, 2013

Outline

- Introduction
- Hardware Status
 - AHCAL
 - SM_HBU
 - ScECAL
- Power Pulsing
- Conclusion

Shower in 5 AHCAL layers (DESY testbeam)

Hardware Status

- HBU2: (two production runs): 14 boards. (tiles?)
 - Next HBU order requires redesign: New LED type!
- CIB, POWER and CALIB: 20 boards.
- Flexleads (2 types, a lot in use): 14 boards (each type)
- EBU vertical: 4 boards
- EBU horizontal: 4 boards (new: completed)
- > SM_HBU: 2 boards
- Delivered complete sets (HBU2/EBU/SM_HBU + DAQ modules) to: Uni-HH, Shinshu, Mainz, NIU. One further HBU2 to Wuppertal.

New 8 HBU2 boards

- All 8 new HBU2s have been tested and work fine.
- Problem: Significant spread of board dimensions within the 8 boards.
 Landmarks differ up to 0.4mm (0.1mm was specified).
- Problems during PCB assembly and with the steel cassettes (individual cassettes needed).

- From the discussion with PCB manufacturer: For the next order, there will be a pre-compensation process step for the inner pcb layers before the pressing operation. This will solve the problem as it did for the first 6 HBUs.
- 5 of the new HBU2s delivered to Uni HH.

HBU redesign (HBU3)

- Adjust LED holes (new LEDs), balance LED positions for Uni-HH tiles
- Equalize LED drivers line lengths (TDC calibration by LEDs)
- Test: terminate SiPMs to VDDA (power pulsing). Jumper!
- Additional GND and VDDA pads next to flexfoil connectors to reduce voltage drop across slab.
- HBU Redesign till mid Feb. 2014.
 - Confirmation about new LEDs and drivers (Wuppertal)
 - Test of SiPM termination for power-pulsing (DESY).

Detector Power-Up Problem

- Arbitrary operating conditions in multilayer setup (very seldom in single-layer setup): Stuck TDC, spontaneous noisy channels, shifted MIP position.
- > SPIROC reset does not help, only re-powering helped.

Solution for Power-Up Problem

- Problem identified: After power-up and booting, the DIF FPGA sets TTL lines to SPIROCs before enabling SPIROC's power. => SPIROCs get power through protection diodes of input channels.
- New switch-on order cured the problem. Minor modification on POWER3 board needed.

Broken SPIROCs in testbeam

- During testbeam 6 out of 20 SPIROCs on three HBU2s have been damaged.
- Damage is the same for all chips: oscillating input DACs.
- SiPM pins have damaged the isolating foil and touched the steel cassette's top plate. => Stronger foil seems to cure the problem!

Northern Illinois University

Integrated Readout Layer

- Uses HBU2 FE
- Hamamatsu MPPC mounted on small flex circuits
- Scintillator "Megatile" with 3 x 3 cm cells optically isolated with white epoxy
- Cells have a concave dimple improve the uniformity of the response and to direct light through hole in board onto MPPC
- Easier to assemble, does not need WLS optical fiber

Scintillator ECAL – EBU vertical

- 4 EBU_vertical produced and tested at DESY testbeam.
- > ScECAL uses the same DAQ as AHCAL => easy synchronization in testbeam.

2 Scintillator ECAL modules with HCAL DAQ interface modules.

2 ScECAL and 2 HCAL layers in DESY testbeam, operated synchronously by the HCAL DAQ.

Scintillator ECAL – EBU horizontal

- 4 EBU_horizontal produced.
- Horizontal scintillator orientation.
- Long flexleads needed at output, expected in Jan. 2014
- Survived Smoke-Test and worked (without bias/tiles) right out of the box ☺.

Full extension: Test of 6 HBU2s in a Row

6 HBU2s with 864 detector channels in lab (Sept. 2013).

Questions: Transport of 40MHz LVDS clocks, power, LED trigger over 216cm possible without limitations of detector performance?

First results for smallest signals (single-pixel spectra of SiPMs) prove the suitability of the setup:

Full extension: Power Pulsing

- Switched Current: 2.75A (analog supply voltage VDDA).
- Voltage drop across 216cm (dominated by flexleads):
 - 0.18V on VDDA (19mΩ per HBU2+flexlead)
 - 0.04V on GND (4mΩ per HBU2+flexlead)
- Studies ongoing, e.g. additional block capacitors:

Switch-on time T_on too small: Low gain and high noise!

Full Extension: Power Pulsing

With 6mF: ~2ms switch-on time needed (~2% on-time). Excellent agreement w/wo power pulsing (only small pedestal shift).

- Power Pulsing works for the full extension setup!
- Trade-off between switch-on time and blocking capacitors needed.
- Studies ongoing several ideas in discussion with LAL.

Conclusion – Next steps towards testbeam

- Power Supplies: MPOD System from Wiener: LV modules have arrived, HV modules are ~2months late and we do not get a clear date of the delivery.
- Temperature Readout of AHCAL needs improvement task is delayed due to illness of the microcontroller developer. Next steps end Jan. 2014.

Backup

Backup Slides

Towards the next SPIROC

Topics to keep in mind ...

- Pedestal shift when too many channels have a high signal.
- Memory cell dependent amplitude decay. Solved by compensation caps.
- Slow-Control configuration is problematic for long slabs.
- Feedback of channel-wise trigger thresholds on the global threshold.
- Random zero events and zero-results for the first trigger.
- Poor uniformity of the input DACs.
- Holdscan is different for HG/LG.
- Trigger threshold width increases with threshold height.
- Amplitude-to-threshold relation depends on preamp. setting and pulse shape.
- > TDC: Amplitude dependent time-shifts and channel-to-channel spread.
- TDC: Result depends on which ramp is used and the memory cell.
- TDC: big chip-to-chip spread of ramp slopes.

Trigger Validation (Testbeam mode)

Only stores events that are validated by an external trigger signal

- Validation works fine: Histogram only shows MIP events without noise/pedestal contributions.
- Problem: Validation does not work for noise hits between no_trig and rising CK_5M edge (200-400ns). Triggers in this period should be rejected (=> dead time).
- Now: Factor 10 noise reduction. Improve 400ns window size.

Power and Power Pulsing (PP)

- Aim: Switch on as short as possible before data taking starts (initial idea: 20µs).
- Results with charge injection show a decreased amplitude response with PP.
- Single-Pixel Spectra measurements show a reduced amplitude with PP.
- Aimed power dissipation of 20µW per channel not reached yet.

TDC Calibration – CERN Module

- Calibration of all 16 SPIROC2b ASICs of the CERN Testbeam-module with charge injection.
- Chip-to_chip spread of the TDC ramp slopes: Calibration necessary: TDC (time measurement!).

TDC: Time Walk and Channel-to-Channel Spread

- Amplitude-dependent time-shifts and channel-to-channel differences.
- Difficult to parameterize because of different behaviours. Channel-wise TDC calibration necessary as for ADC (MIP calibration)?

TDC: Memory Cell Dependence and "2-Ramp" Problem

- TDC result depends on memory cell
- The SPIROC2b internal TDC ramps have different amplitudes and for a specific event it cannot be identified with which ramp the TDC result has been achieved (known problems).

Start-Run Problem

CERN testbeam

High noise on pedestal for first 1-2 readout cycles

Slow-Control Problem

For longer AHCAL slabs, the slow-control programming is instable. Reason:
Slow-control clock, special pulse-shape needed (series R, termination R, block-C)

- Although the slow-clock looks fine, the configuration does not work.
- Analysis ongoing, I2C in SPIROC3.

