

Peak Sensing ADC for SiPM readout

Wei Shen

Kirchhoff Institut für Physik Ruprecht-Karls Universität Heidelberg

10.12.2013 DESY

Outline

- ✓ Motivation & Requirements of the ADC
- ✓ Analog to Digital Converter structure
 - Peak holder
 - SAR capacitor array
 - Switches
 - Comparator
 - Residue amplification
 - Power estimation
- ✓ Status & Time Plan

Motivation and Requirements

- ✓ Quatization (one ADC per channel): charge integration for SiPM output low power < 1mW
- ✓ Charge collection is a time dependent process peaking time is rather sensitive to the signal shape
- ✓ Resolution 12 bits is needed in a small range 3 different types of signal to quantize:
 - ⇔ SiPM calibration signal 12 bits, $σ=260μV < σ_e$
 - physical MIP-like signal ramp voltage

10 bits,
$$\sigma = 1.04 \text{mV} \sim \sigma_e \ll S_{\text{pixel}}$$

ADC structure

- Random signal peak tracking >1.2V peaking time > 50ns
- · Peak identification is provided for synchronization
- SAR sampling rate 5MS/s, but not limited max 50MS/s

ADC structure

· The total processing time consists of

peaking time: tpeaking

synchronization time: t_{syn}

conversion time: t_{conv}

reset time:: t_{reset}


```
shaping time \tau = 50ns, samping rate = 5Ms/s

t_{peaking} = 100ns, t_{conv} = 200ns

t_{syn} = 20ns, t_{reset} = 150ns (5%)

t_{total} = 470ns, < 10 \tau

direct signal processing + conversion

The data taken is only dependent on the FIFO size

\checkmark \quad \tau = 25ns, 10Ms/s, t_{total} < 350ns
```

Circuit units - umc 0.18µ

Peak holder

3 functional phases

tracking (sampling switch)
peaking
reset (fast recovery needed)

capacitor is shared by the SAR array

bootstrape switch is needed non-linearity should not be affected by signal amplitude. Only a constant part

Peak holder - simulation

Offset is expected, but differential operation might rescue Pedestal tracking beforehand

Residue smaller than +/- 1mv in all signal range

nevertheless, only the small signal part needs 12 bit resolution

SAR capa array

- Largest Error comes from switch of the MSB
 DNL = (2^k 1)dC/C LSBs
 k=10 , DNL < 1 LSB, dC/C must be better than 0.1%</p>
 According to the UMC datasheet, for Cpoly W=L > 7um, 10um will be taken
- The total size of the C-array
 32um * 100um, differential 64um *100um
 KT/C noise, (thermal noise comes from the switch
 channel resistance) will be around 0.2 mV

Setting time < 10ns

SAR capa array

SAR capa simulation

DNL/INL < 0.5 LSB

response fast enough

switch design

- · There are 3 types of signal to switch
- · vcc, qnd, signal, 3 different switches need

No complete cancellation

At all corners, error about 1-2mV in MC connected to

Max error + /-125uV at

switch design

· For signal, range range from 0 to 1.8V, switch with P/N mos is necessary, but the channel charge / clock feedthrough is dependent on input signal:

Bootstrap Switch

compatator design

dynamic comparator

fast response time simple latch structure

no DC power

Mb is used to reduce mismatch error

Current source Mb sinks 20uA
 no DC power
 AC power < 5uW response speed <1.5ns

Residue Amplification

- · Only functional in the calibration mode 12 bits
- · Residue is amplified by

Carray/Cfeedback

Detailed Switch control

Is necessary

Power estimation

· The power consists of 5 components peak sensing (amp, additional comparator) $amp = 350\mu W$, additional comparator = $50\mu W$ capacitor track power 1µW (1% occupancy) SAR switching power 80μW (max) dynamic comparator 5µW control logic 100 µW

In total $< 600 \mu W$ (aggressively, $400 \mu W$)

Status & summary

- · SAR ADC structure chosen
- 12 bits = 10 + 3 with 1 bit redundancy
- · SAR part

 peak sensing, switches, comparators finished

 control logic and fine tuning

 residue part not finished yet

 Tape out, spring 2014, UMC 0.18µ CMOS