AHCAL project overview

Felix Sefkow

HCAL Main meeting DESY, December 09, 2013

- Analysis
- Next prototype
- Test beams
- Optimisation

Validation of Sirnuauon

QGSP BEAT ±0.4% b = 2.34±0.12% c = 0.504±0.042 [GeV]

0 6

- 3 papers in 2013
 - track segments , pions vs Geant 4, tungsten < 10 GeV
- 3 more in the pipeline
 - tungsten 10-100 GeV, tungsten timing, protons
- More: spatial resolution, semi-digital study, W > 100 GeV
- FNAL all scintillator analysis re-started
- Analysis nearing reaching completion
- Time to worry about fresh data...

Hardware: Outlook Dec 2012

- Proceed at the integration frontier
- while remaining open for different sensor options
- Electronics is versatile
- and ready to make a start

2nd generation prototype

• Full slab: signal integrity

- Full layer: hadrons
- First stack: electrons

Scintillator HCAL

3 2 20

6

2013: first stack

- breakthrough in summer: synchronous 5 layer operation
- intermediate DAQ: USB, HDMI
- using new CCC
 - clock & control card
- Next: integrate LDA and gradually evolve to full HDMI

- also worked with ECAL and HCAL layers together
- ECAL group expressed interest to join next HCAL test beam

Flexible test beam roadmap

- 2013-14:
 - e.m. stack, 10-15 layers, ~200 ch
- 2015-16:
 - hadron stack with shower start finder, 20-30 HBUs, \sim 4000 ch
- 2017-18:
 - hadron prototype, 20-40 layers, 10-20,000 ch
- Gradual SiPM and tile technology down-select
- Exercise mass production and QC procedures

Obstacles

- Bottle-necks in DAQ development
 - both manpower and component delivery temporary
- Test beam operation: some bad surprises
 - dying ASICs, non-reproducible config both solved
 - open issues in ASIC and QC
- Delays in SiPM delivery
 - Ketek, Hamamatsu, ITEP
 - different reasons, same consequences:
 - not well prepared test beam modules, or none at all
 - no "standard commissioning procedure" yet
- DESY shutdown in 2014
 - next 3.5 weeks (b/a Xmas) last chance for quite some time
 - further running in 2014 unclear, maybe 2 months
 - difficult to prepare for CERN

Keep the momentum

- 5 HBUs running
- 8 HBUs in production at Hamburg
- Tiles for 2 HBUs left ITEP
- Sensors for 8 more ordered (HH, HD)
- More? To be discussed..
- >2 EBUs

- Test beam at 2014
- CERN re-opens PS in July and SPS in October

18 HBUs

ILC Timeline Proposed by LCC

- 2013 2016
 - Negotiations among governments
 - Accelerator detailed design, R&Ds for cost-effective production, site study, CFS designs etc.
 - Prepare for the international lab.
- 2016 2018
 - 'Green-sign' for the ILC construction to be given (in early 2016)
 - International agreement reached to go ahead with the ILC
 - Formation of the ILC lab.
 - Preparation for biddings etc.
- 2018
 - Construction start (9 yrs)
- 2027
 - Construction (500 GeV) complete, (and commissioning start)
 (250 GeV is slightly shorter)

Mid-term

- Realistically assign an asymmetric error to this time line
 - +3 -0 y
 - TDR 16 18, construction start 18-21
- Technology down-select in 2-5 years
- Not imminent, but with given low level of funding and low rate of progress - not so far, either.
- A window to re-optimise and justify cost
 - tackle cost drivers
 - physics justification: HCAL / PFLOW sensitive channels
- and time!
 - AHCAL deals with 1000x larger number of basic units than competitors
- Re-optimise tile design, assembly and QC chain together

Cost optimisation

• Chose a parameterisation basis for cost and performance study

– R inner radius	confusion	
 ε aspect ratio 		
• z barrel length εR		
– T total thickness	leakage	physics
– N number of layers	resolution	motivated
 g active gap thickness (const) 		parameters
 d absorber layer thickness (T-Ng)/(N+1) 		
– s tile size	confusion	
$Cost = C_V * V + C_C = 45M$	Cost impact	t factor
Cost = $C_V * V + C_C = 45M$ - Constant $C_C = 10M$	Cost impact	t factor [% / %]
Cost = $C_V * V + C_C = 45M$ - Constant $C_C = 10M$ - Rest scales with Volume ~ $2R^2T+RT^2$	Cost impact	t factor [% / %] 1.4
Cost = $C_V * V + C_C = 45M$ - Constant $C_C = 10M$ - Rest scales with Volume ~ $2R^2T+RT^2$ • Absorber 10M ~ V * d/(d+g)	Cost impact Radius Thickness	t factor [% / %] 1.4 0.5
$\begin{aligned} \text{Cost} &= C_V * V + C_C = 45M \\ &- \text{Constant } C_C = 10M \\ &- \text{Rest scales with Volume} \sim 2R^2T + RT^2 \\ & \text{Absorber 10M} \sim V * d/(d+g) \\ & \text{Instrum. Area 16M} \sim V/(d+g) = N * V/(T-d) \end{aligned}$	Cost impact Radius Thickness No layers	t factor [% / %] 1.4 0.5 0.5
$\begin{aligned} \text{Cost} &= C_V * V + C_C = 45M \\ &- \text{Constant } C_C = 10M \\ &- \text{Rest scales with Volume} \sim 2R^2T + RT^2 \\ & \text{Absorber 10M} \sim V * d/(d+g) \\ & \text{Instrum. Area 16M} \sim V/(d+g) = N * V/(T-q) \\ & \text{Channels 10M} \sim V / \textbf{s}^2(d+g) \end{aligned}$	Cost impact Radius Thickness No layers Tile size	t factor [% / %] 1.4 0.5 0.5 0.4
$\begin{aligned} \text{Cost} &= C_V * V + C_C = 45M \\ &- \text{Constant } C_C = 10M \\ &- \text{Rest scales with Volume} \sim 2R^2T + RT^2 \\ & \text{Absorber 10M} \sim V * d/(d+g) \\ & \text{Instrum. Area 16M} \sim V/(d+g) = N * V/(T-Q) \\ & \text{Channels 10M} \sim V / s^2(d+g) \\ & \text{adjusted to DBD numbers after Cracow} \end{aligned}$	Cost impact Radius Thickness No layers Tile size	t factor [% / %] 1.4 0.5 0.5 0.4

AHCAL optimisation

Current Status

- Have now completed investigation of jet energy resolution as function of ECAL parameters.
- Complete study by providing basic parameterisation of jet energy resolution. Then prepare a publication.
- Break resolution down into component parts (energy resolution, confusion, ...) and parameterise separately.
- Aim to keep parameterisation simple; don't try to reproduce fine details, but provides overall "scalings".
- Should describe variation of each jet energy resolution term as a function of following:
 - Energy
 - ECAL Cell Size
 - ECAL Inner Radius
 - ECAL #Layers
 - Cell Thickness (Sc only)
- Won't attempt to describe multiple transverse granularity ECALs unless there is demand to do this.

Industrialisation: Numbers!

- The AHCAL
- 60 sub-modules
- 3000 layers
- 10,000 slabs
- 60,000 HBUs
- 200'000 ASICs
- 8,000,000 tiles and SiPMs

- One year
- 46 weeks
- 230 days

• 2000 hours

Felix Sefkow

• 100,000 minutes

• 7,000,000 seconds

AHCAL optimisation

To summarize:

- 2013: first new calorimeter stack since 2006
- Hardware for 2014 CERN test beam comes at hand
 a lot of work on procedures
- Opened up basic design options but need to converge in not so far future
- Prepare a strong case

Test beam 2014

ML

Preliminary

Start NA proton physics										End NA & PSB/PS physics					
_	Pct					/ Nov				Dec					
Wk	40	41	42		43	44	45	46	47	48	49	50	51	52	
Мо	29		6	13	20	27	3	10	17	24	1	8	¥ 15	22	
Tu													do		
We	Bui	l is											ical st		
Th	da b	rubb											Techn		
Fr	SPS se	SPS se												Xmas	
Sa	ΠΠ	ΠΓΓ													
Su															

AHCAL test beam

- What?
 - how many and which tile SiPM combinations
- How?
 - to prepare and to qualify
- Where?
 - PS, SPS
- When?
 - and how often
- Which?
 - absorber: both W and Fe available

- Go for it!
- 2x 2 weeks, > 4 weeks in-between, late
- 1st: muons and electrons in steel
 - calibration and validation
- 2nd: pions in steel and tungsten
 - physics
- Exercise commissioning of new HBUs in January
 - integrate as they become <u>ready</u>
 - establish procedure and qualification

AIDA'

Some facts

- EUDET 2006 2010, calo 2 of 7 M
 - from powerpoint to stack and HBU, SPIROC2
- AIDA 2011-2014, calo 0.8 of 8 M
 - interfaces, TB support for W, temp. stabil., Hardroc3
- AIDA' call 12/2013, proposal 9/2014, EoI 12/2013
 - more or less LHC participation
 - fewer, larger projects
 - fewer direct partners
 - equal or more trans-national access
- Need to think about projects that serve us all
 - research for the improvement of infrastructure (see EUDET/AIDA)
- Examples:
 - common DAQ: re-focus on ILC detector integration
 - infrastructure to instrument the EUDET stack:
 - ASIC dev and tests, HBU assembly

HCAL Main

Next steps

- Today: discuss and collect ideas
- Put together one or two AHCAL EoIs
- Liaise with ECAL, SDHCAL
- Early next year: coordinate at ILC level
- February: proposal preparation meeting at CERN
- March: first draft for AIDA annual meeting in Vienna

