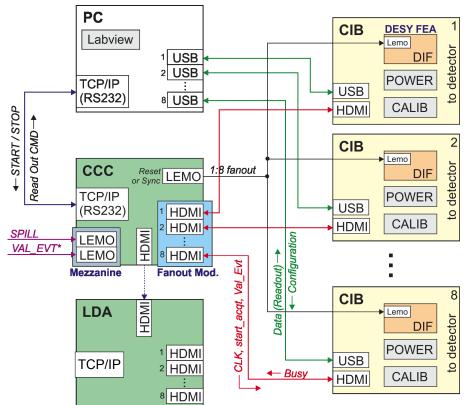
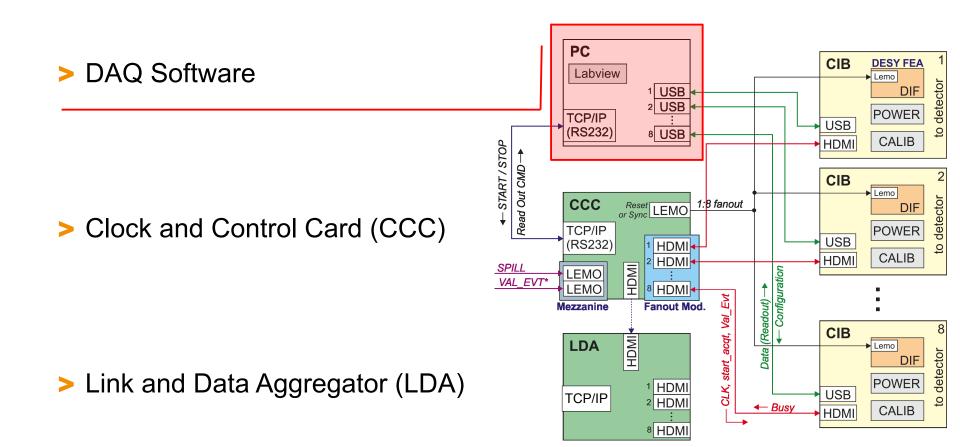
Status of DAQ System for Scintillator Calorimeters.

- Design concept
- > DAQ Software
- > Clock and Control Card (CCC)
- Link and Data Aggregator (LDA)
- Future plans

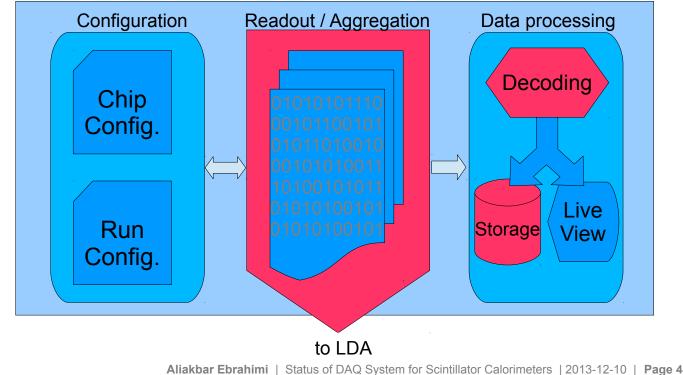
Aliakbar Ebrahimi - DESY CALICE AHCAL Main Meeting 2013 Hamburg, Dec 09-10 2013




DAQ Design Concept

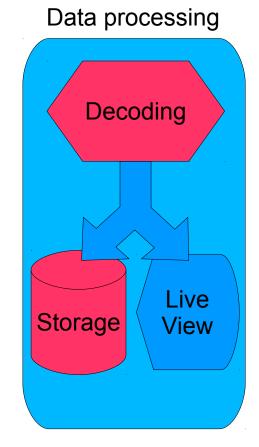
- The original DAQ could operate only one layer
- New multilayer DAQ based on the original CALICE DAQ concept
- > Built on the single layer DAQ
 - Software improvement
 - Multiple-DIF configuration
 - Global clock and control
 - Data aggregator
 - Parallel readout
 - Scalable
- Currently there are 2 connections to DAQ interfaces (DIF):
 - HDMI for fast signals
 - USB for slow signals and data

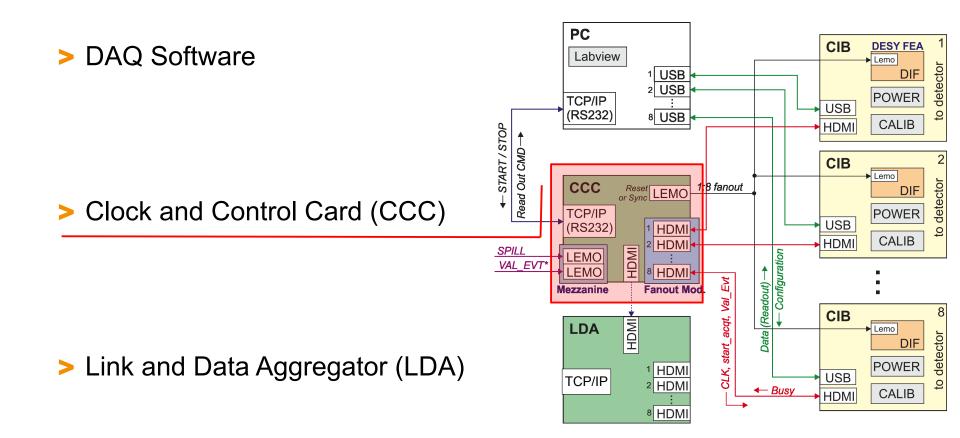
Main DAQ components



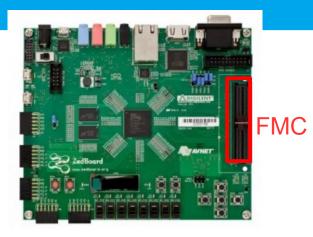
AHCAL DAQ Software

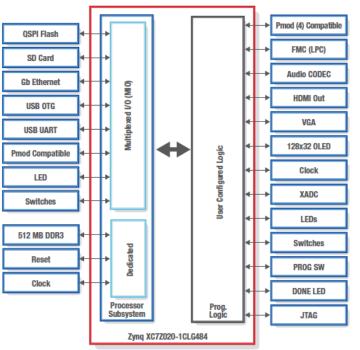
- > Based on LabView
 - Live monitoring, easy modifications
- Some tasks done using C++ libraries
- Multithreaded
- > Modular


	ASIC Power Enable	CCC Connection	Polling	Unpacking
No. Devices Handles	ASIC Power Return	CCC Address Port	Polling Poll Device	Method
0 Handle SerialNo 49567872	^	fichcalccell 3141	ccc	C++ Lib
Handle StriatNo	off Ack 🥥 🗍 🔘	CCC Centig Path	Timeout 400	
49167872 8 Config	•	1 ccc_conf.uml		
Latency (ms)	VDDA/VDDD Power Enable	Configure Probe		
Set: 2	VDD Power Return			
Baud Rate Flow Control Purge Rags 9000 None - FT_PURGE_RX	ON Set 0			
Stop Bits Parity Word Length FT_STOP_BITS_1 + FT_PARITY_NONE + FT_BITS_8 +				
	3.3V+Drivers Power Enable			
b Init Return USB Open (all) OUSB Init (all) OReset DIF (all)	3.3V Power Return			
Single Init Returns	ON			
51 open init reset SerialNo ^	OFF ON Adk 🔾 🗍 👅			
0 0 0				
open init reset SerialNo =				


C++ Libraries for Decoding and Storage

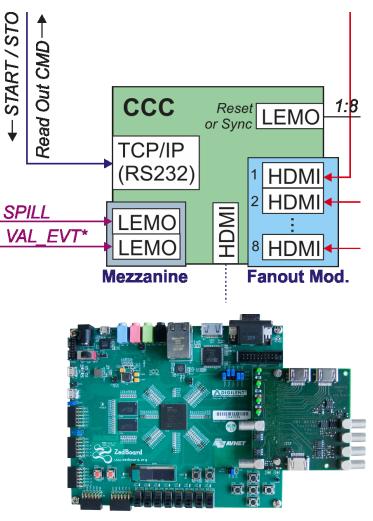
- > A C++ windows library (DLL) is developed to replace native LabVIEW decoding
 - Faster by a factor of 5
 - Calling the C++ DLL from LabVIEW is ~20% faster
 - Decoding algorithm will be optimized to make it even faster
- > ASCII file output for storage
 - In current version LabVIEW handles the storage
- > A LCIO converter function is developed and is tested in Linux environment
 - Not implemented in DAQ software as of yet
 - To be added to the LDA master software


Main DAQ Components

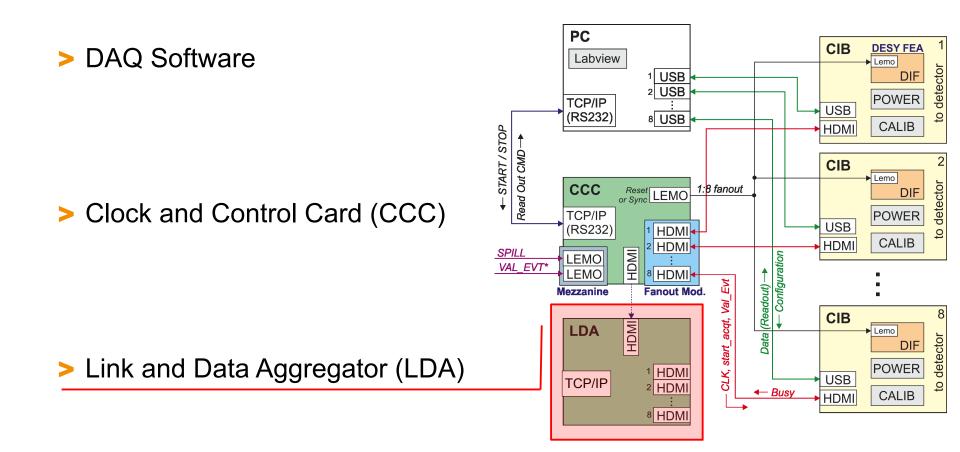


ZedBoard

- > Zynq Evaluation & Development Board
- > Xilinx Zynq-7000 SoC
 - Processor Subsyst. (PS): Dual ARM Cortex-A9
 - Programmable Logic (PL): Xilinx 7 series FPGA
 - 100Gbps interconnect bandwidth
 - ARM programmability+FPGA flexibility
- > On board memory
 - 512 MB DDR3 + 256 MB QUAD-SPI
- > PS is able to run Linux
- > FPG Mezzanine Connector (FMC)
 - Allows adding custom boards

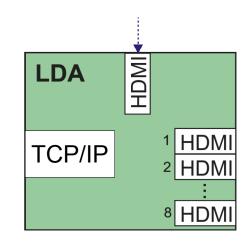


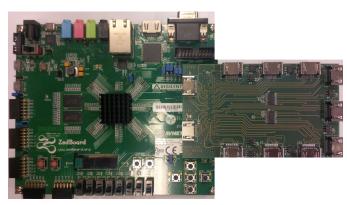
Clock and Control Card (CCC)


- New CCC design by university of Mainz
 - Compatible with CALICE DAQ
- Based on the ZedBoard
- Mezzanine board designed at Mainz uni.
- Ethernet connection to DAQ PC
 - Start / Stop / Readout
- In temp. setup while LDA is being developed
 - 8 layers are served using an 1:8 HDMI fanout
- LEMO connections for
 - Validation signal
 - Spill signal
 - Reset / Sync signal
- > Tested successfully and is in operation

ZedBoard and Mezzanine

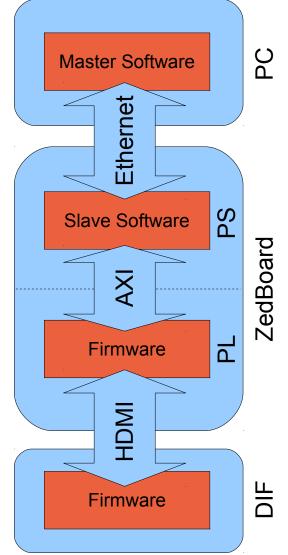
Main DAQ Components





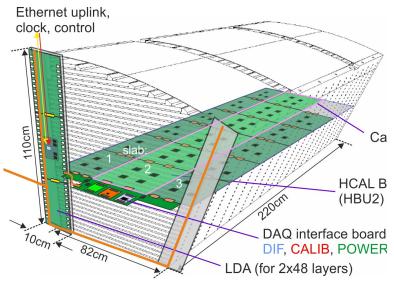
Link and Data Aggregator (LDA)

- New LDA design by university of Mainz
 - Compatible with CALICE DAQ
- Based on the ZedBoard
- Mezzanine board designed at Mainz uni.
- > There are two options
 - Mini-LDA: ZedBoard + Mezzanine → Generic
 - Wing LDA → AHCAL geometry specific
- Mini-LDA hardware is ready
 - I HDMI connection to the CCC
 - I0 HDMI connections to the the DIFs

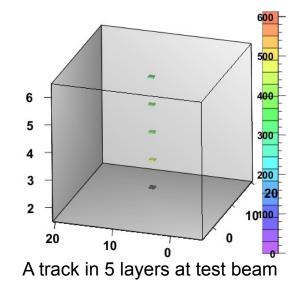


Mini-LDA and Mezzanine

LDA Development Roadmap

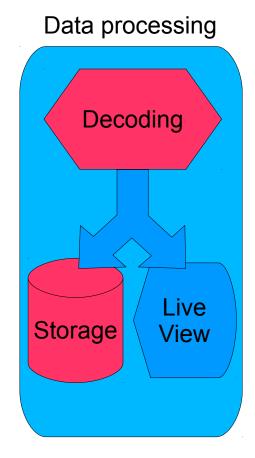

- > A fully functional LDA requires
 - Programming the PL (Firmware)
 - Programming the PS (Slave Software)
 - Change in DAQ software (Master Software)
- 1st step: Mini-LDA as fanout
 - Only firmware development is needed
 - To be tested during December testbeam
- > 2nd step: HDMI and USB connection
 - HDMI for fast signals and reading data
 - Firmware and master/slave software development
 - Firmware is being developed at DESY, software at the university of Mainz
 - To be tested during January testbeam

LDA Development Roadmap


- > By the end of the first two steps
 - Control signals and data are transferred via HDMI
 - Level/Edge sensitive single signals
 - All twisted pairs of HDMI cable are already used
 - Slow signals are still transferred via USB
 - Therefore implementation of protocol for block-transfer and command packets is required
- > 3rd step: Only HDMI connection
 - LDA Firmware
 - LDA master/slave software
 - DIF firmware modification
- Parallel development of the wing-LDA
 - To allow for more than 10 layers
 - Mini_LDA firmware and software could be adopted with minimum effort

Performance of the DAQ system

- Current version of the DAQ tested in different setups
 - Lab Setup, Cosmic Muon run, Test beams
- Fully synchronous operation of 5 layers
- Very stable operation
 - 72+ hours cosmic Muon run
- Faster than ever
 - ~9Hz readout frequency
 - ~150Hz sustained trigger rate
- Successfully tested in a two detector setup
 - 2xHBU + 2xEBU
- It could be used for the other calorimeters



HCAL+ECAL

Scalability Considerations

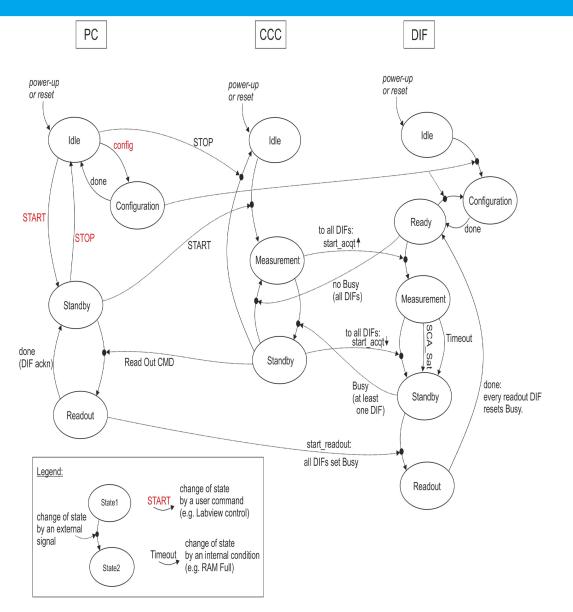
- Readout rate of ~9Hz (all memories full)
- Seems not to scale with number of layers up to now
- Different components need to be tested in larger setups with more layers/HBUs
- Decoding is the bottle-neck
 - Depends on the computing power of the PC
 - In previous tests each layer used one core
- Having more layers/HBUs will slow down the system
 - Unless computing power is increased
- Decoding on one of the FPGAs could be a better solution
 - DIF FPGA or LDA FPGA?

Next Steps and Summary

Next steps

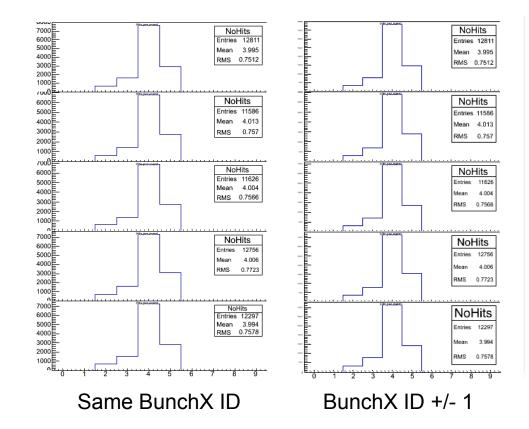
- Full implementation of the Mini-LDA
- Finalizing the Wing-LDA
- > Testing an optimization of the full DAQ in different setups
- Scalability considerations

Summary


- > DAQ system for scintillator calorimeters is under development
- Main DAQ software is improved and tested
- > CCC is tested and in operation
- LDA is under development
- Current version of the DAQ was tested successfully in a multi calorimeter setup

Backup

State Diagram



Aliakbar Ebrahimi | Status of DAQ System for Scintillator Calorimeters | 2013-12-10 | Page 17

Multilayer Synchronicity

- During July test beam synchronicity was tested
- For the same run, number of hits was checked in two different event builders
 - Accepting only the same bunch crossing IDs
 - Accepting bunch crossing IDs +/- 1
- > Absolutely no difference is observed

> We have a true synchronous detector

