Update on the design of SMD SiPM and dimpled tile

Yong Liu, JGU Mainz Dec. 9, 2013

B. Bauß, V. Büscher, J. Caudron, P. Chau, R. Degele, K.H. Geib, S. Krause, L. Masetti, U. Schäfer, R. Spreckels, S. Tapprogge, R. Wanke

Cluster of Excellence

Outline

Review

- Uniformity scan at MPI, Munich (Aug, 2013)
- Simulation
 - SMD design: (center) bottom surface coupling
 - Present design: side surface coupling
- Summary and Plan

SMD SiPM

- Motivations
 - No pins: more tolerance for alignment
 - Easier to solder on HBU boards automatically
 - Massive assembly machine (Phi Chau's talk)
- Mega-tiles initiated by NIU
 - Large concave dimple in the bottom of tile

Ref: Nuclear Instruments and Methods in Physics Research A 605 (2009) 277

Review: teststand in MPI Munich

Review: uniformity of center-dimpled tile

Yong Liu, CALICE AHCAL Main Meeting, DESY

Simulation: SMD SiPM + dimpled tile

- Geometry
 - Dimpled tile: $30 \times 30 \times 3 mm$
 - SiPMs (used same PDE curve)
 - KETEK PM11*: 1.2 × 1.2 mm
 - KETEK PM22*: 2.0 × 2.0 mm
 - Reflective foil:
 - 3M ESR: curve of reflectivity vs wavelength
- Primary particle generator
 - Fixed energy: 2.28 MeV (Max. in Sr-90 Beta spectrum)
- Simulation scan
 - 30x30bins; 100 events/bin

SiPM flush with bottom surface

99.7% area: 30% dev.98.4% area: 20% dev.95.0% area: 10% dev.

99.4% area: 30% dev. 99.0% area: 20% dev. 95.2% area: 10% dev.

SMD (assumed) thickness 1mm

SiPM: 1.0mm inside dimple

100% area: 30% dev. ↑ 100% area: 20% dev. ↑ 95.8% area: 10% dev.↑

100% area: 30% dev.↑ 99.9% area: 20% dev.↑ 96.4% area: 10% dev.↑

Side surface coupling: MC vs measurement

Tile: $30 \times 30 \times 3$ mm; no dimple

KETEK SiPM 1.2 \times 1.2 mm: mean 42 p.e. mean 29.2 p.e./mm² can be foreseen

Uniformity measurement of DESY tile at MPI

MPPC 1x1 mm: Mean 28.4 p.e.

Ref: Christian Soldner, CALICE Collab. Meeting, Shinshu Japan, Mar. 2012

- Present design (side-surface coupling)
 - Simulation can be compared with measurement
- Simulation for SMD design
 - More p.e.s by larger SiPM sensitive area (roughly proportional)
 - SMD SiPM (sensitive surface)
 - Flush: more p.e. but less uniformity
 - 1mm inside dimple: better uniformity; less p.e.

- Updated SMD design
 - Uniformity measurement
 - Compare with simulation
- SMD design for HBU boards
 - Collaboration-wide efforts

Thank you!

Cluster of Excellence

SiPM 0.5mm inside dimple

100% area: 30% dev. 99.1% area: 20% dev. 95.4% area: 10% dev.

100% area: 30% dev. 98.8% area: 20% dev. 93.6% area: 10% dev.

Simulation: setup for uniformity scan

30x30 positions to cover the whole tile area

Simulation: details

⁹⁰Sr energy spectrum:

use normalized polymial fitting as p.d.f. to sample

$${}^{90}Sr \rightarrow {}^{90}Y + e^- + \bar{\nu}$$
$${}^{90}Y \rightarrow {}^{90}Zr + e^- + \bar{\nu}$$

Ref 1: Silicon Strips and Pixel Technologies, Excellence in Detectors and Instrumentation Technologies 2011, CERN

Scintillator emission spectra

Ref 3: Nuclear Instruments and Methods in Physics Research A 577 (2007) 523

Ref 2: SiPM Development at KETEK, CALICE Collaboration Meeting, March 2013 Hamburg