Hadron shower profiles from test beam data and simulations of the CALICE Sc-Fe AHCAL:

update with GEANT4 v9.6

Marina Chadeeva

ITEP, Moscow

Outline

- Data and simulation samples
- 2 Global spatial parameters
- Ongitudinal shower profiles

4 Radial profiles

Data samples, software and event selection

Test beam data: reconstruction with calice_soft v04-07

CERN 2007 runs, π^+ @ 30-80 GeV (ECAL+AHCAL+TCMT), single runs FNAL 2009 runs, protons @ 10 and 15 GeV (AHCAL+TCMT)

Simulations (thanks to Sergey Morozov)

Geant4 v9.6p01, Mokka v08_01 (improved TCMT treatment) Physics lists: QGSP_BERT, FTFP_BERT calice_soft v04-07 for digitization (846 keV/MIP, 0.15 xtalk for AHCAL)

Event selection (the same procedure for data and MC samples)

- Cut at 0.5 MIP for all hits to reject noise
- Sample cleaning from muons, multiparticle and empty events (CAN-035), additional cuts to reject positrons and multiparticle events in FNAL runs (CAN-040)
- For analysis: shower start at the beginning of AHCAL
 - in layers 2-4 for global observables (details in CAN-040)
 - in layers 3-5 for shower profiles from FNAL data
 - in layers 1-4 for shower profiles from CERN data
- Details of systematic uncertainty estimates in backup slides and CAN-040

Geant4 v9.4 vs. v9.6: longitudinal CoG

The shower center of gravity in the longitudinal direction for event with shower start position z_{start} :

$$\mathsf{Z0} = \frac{\sum e_i \cdot (z_i - z_{\text{start}})}{\sum e_i}$$

Sum over hits with longitudinal position $z_i \geq z_{\rm start}$ and signal e_i

Typical distribution of Z0 (GEANT4 9.4)

from addendum to CAN-040

Geant4 v9.4 vs. v9.6: mean shower radius

Marina Chadeeva (ITEP)

AHCAL main meeting, DESY

Fit to longitudinal profiles

 $\frac{\Delta E}{\Delta z} = A \cdot \left(f \cdot \left(\frac{z}{\beta_{\text{short}}} \right)^{\alpha_{\text{short}} - 1} \cdot \frac{\exp(-\frac{z}{\beta_{\text{short}}})}{\beta_{\text{short}} \Gamma(\alpha_{\text{short}})} + (1 - f) \cdot \left(\frac{z}{\beta_{\text{long}}} \right)^{\alpha_{\text{long}} - 1} \cdot \frac{\exp(-\frac{z}{\beta_{\text{long}}})}{\beta_{\text{long}} \Gamma(\alpha_{\text{long}})} \right)$ Fit parameters: scaling factor A, fractional contribution f, multiplicity parameters α_{short} and α_{long} , slope parameters β_{short} and β_{long} The smaller slope parameter from fit is called β_{short} with corresponding α_{short} and fractional contribution f. ($\lambda_{\text{I}} = 231 \text{ mm}$)

Examples of longitudinal profiles: 10 GeV

Examples of longitudinal profiles: 80 GeV

Longitudinal shower profiles

Ratio of longitudinal profiles: 10 and 15 GeV

Longitudinal shower profiles

Ratio of longitudinal profiles: 40 and 80 GeV

FTFP_BERT much better 5-10% difference @ shower maximum Shorter shower in QGSP_BERT FTFP_BERT much better, although shower start seems to be found earlier than in data Huge disagreement with QGSP_BERT

Parameters of longitudinal profiles

Fraction of the "short" component

Fractional contribution f of the component with $\alpha_{\rm short}$ and $\beta_{\rm short}$ No significant changes from GEANT4 9.4 to 9.6

Overestimated by FTFP_BERT by ${\sim}20\%$ above 20 GeV.

Good prediction by FTFP_BERT in all studied energy range.

f is overestimated by QGSP_BERT by more than 50% above 20 GeV.

Fit to radial profiles

 $\begin{array}{l} \frac{\Delta E}{\Delta S}(r) = A_{\rm core} \cdot \exp(-r/\beta_{\rm core}) + A_{\rm halo} \cdot \exp(-r/\beta_{\rm halo}) \\ \Delta S = 2\pi r \Delta r \qquad \sigma_r = 2 \ {\rm mm} \ ({\rm accuracy \ of \ shower \ axis}) \\ {\rm scaling \ factors} \ A_{\rm core} \ {\rm and} \ A_{\rm halo}, \ {\rm slope \ parameters} \ \beta_{\rm core} < \beta_{\rm halo} \end{array}$

Radius $R_{\rm core}$ corresponds to the intersection of two exponents. $R_{\rm core}$ is ~100-110 mm below 20 GeV and ≈95 mm from 30 GeV and above.

Ratio of radial profiles: 15 and 80 GeV

FTFP_BERT in better agreement with data Structure at 80 GeV due to low signal in peripheral region (narrow showers) Overestimation by FTFP_BERT (QGSP_BERT) up to 20%(40%) in the core at 80 GeV

Slope parameters of radial profiles

 $\beta_{\rm core}$ describes the behavior near shower axis. Sc-Fe AHCAL: $R_{\rm M}^{\rm eff}$ = 24.5 mm (inner tile 30 mm)

Parameter $\beta_{\rm core}$ from GEANT4 9.4 to 9.6

Geant4 9.4

Geant4 9.6

The difference of FTFP_BERT from data in $\rm GEANT4$ 9.6 decreased down to 5%

Summary

Data and software

- Positive hadron runs in the energy range from 10 to 80 GeV
- Updated calice_soft v04-07 for reconstruction and digitization
- Simulations with GEANT4 9.6p01
- Selection of events with shower start at the beginning of AHCAL

MC and data comparison

- FTFP_BERT gives better predictions of shower profiles than QGSP_BERT.
- Longitudinal development. No significant changes from 9.4 to 9.6. The fractional contribution of the "short" component is the main difference between data and MC above 20 GeV up to 20% (50%) for FTFP_BERT (QGSP_BERT).
- Radial development. Noticeable progress for FTFP_BERT in GEANT4 9.6. The underestimation of core slope parameter for pion showers decreased from 10% to ~5%. This translates into better agreement of mean shower radius.

Backup slides

Systematic uncertainties

Positron contamination in FNAL data

 ${<}1\%$ after positron rejection and requirement of shower start after 2nd AHCAL layer

Pion contamination of proton samples

Beam momentum	Purity of proton
${\sf GeV}/c$	sample η
10	0.66
15	0.73
30	0.95
40	0.84
50	0.79
60	0.89
80	0.78

Proton profiles are corrected by subtracting the average contribution of pion admixture depending on purity η at the corresponding energy.

The corrected content for *i*-th layer (bin)

$$E_i^{\mathrm{corr}} = E_i^{\mathrm{mix}} \cdot rac{1}{\eta} - E_i^{\pi} \cdot rac{1-\eta}{\eta},$$

 E_i^{\min} - from *i*-th bin in the mixed sample E_i^{π} - from *i*-th bin in the pion sample

Layer intercalibration

Systematically higher(lower) response for some layers, difference increases with energy. It is most likely due to saturation correction issues for some cells and dead cells. (More details in the talk on CALICE Collaboration meeting in Hamburg, March 2013.)

Fit quality

Longitudinal profiles

Radial profiles

