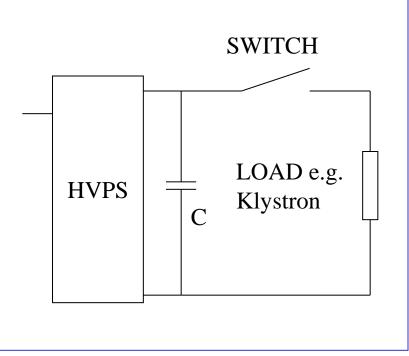


. . .

Modulator

ilr iit

Modulator Types (1)


Hard Tube / Series Switch Modulator Pro:

• Very simple circuit diagram

Con:

- Very high DC voltage (~100kV)
- Big capacitor bank
- => high stored energy
- Switch difficult if not impossible (high voltage, fast switching time, depends on high voltage level)

Some companies have developed semicondictor switches for 150KV/500A

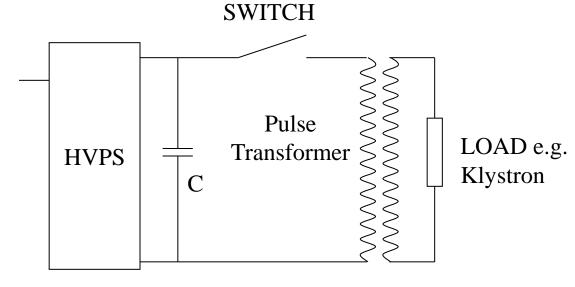
Modulator Types (1b)

Hard Tube / Series Switch Modulator

- Capacitor have to store for 1% voltage droop 50 times the pulse energy example: 1.5ms, 120kV, 140A, 25kJ pulse energy, stored energy 1.26MJ (C= 175mF, U =120kV)
- Switch can be vacuum tube (triode, tetrode) or stack of semiconductors (IGBT, IGCT, GTO, MOSFET)

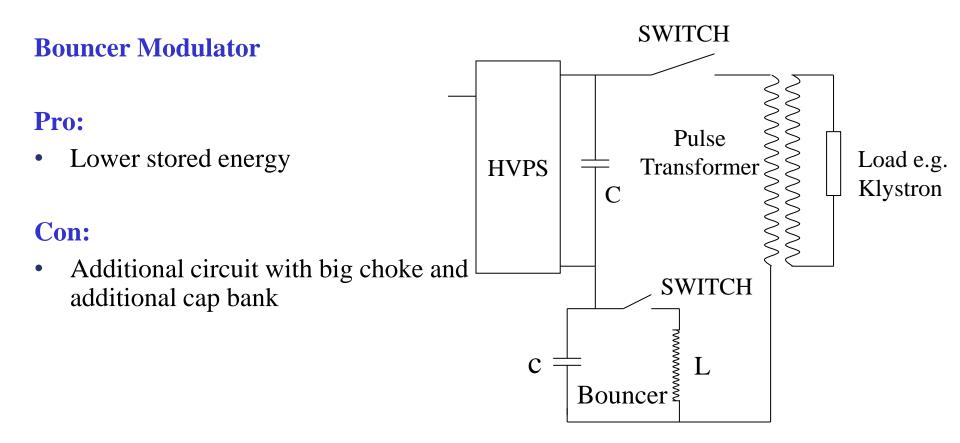
Modulator Types (2)

Hybrid (Series Switch with Pulse Transformer)


Pro:

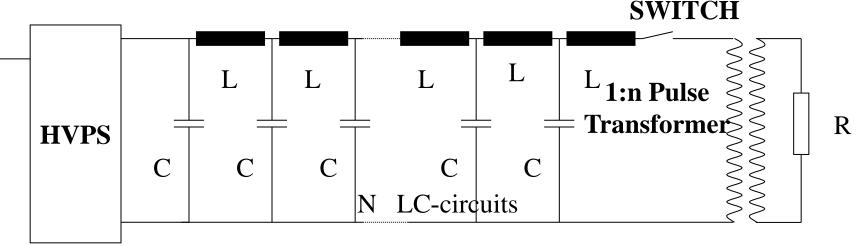
İİL

- Lower DC Voltage
- Switch easier


Con:

- Higher current
- High stored energy
- Leakage inductance of pulse transformer limits pulse rise time

Modulator Types (3)


İİL

Modulator Types (4)

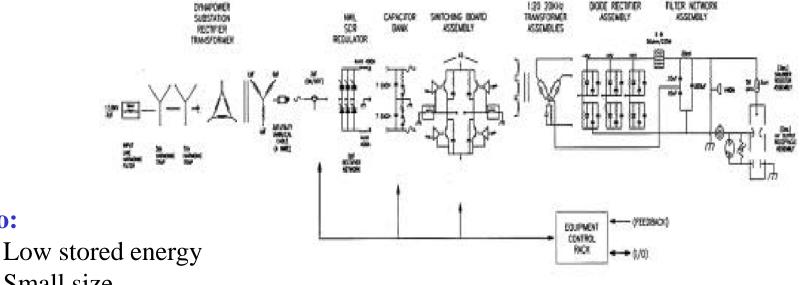
PFN (Pulse Forming Network)

Most used for short pulse and very high voltage

Pro:

•Stored energy = Pulse energy

•Only closing switch required


Con:

•Pulse width $T = 2N \times \sqrt{L \times C}$ is not easy to adjust

- •Pulse flat top must be tuned
- •PFN Impedance $Z = \sqrt{L/C}$ must match load impedance $Z = R/n^2$
- •Charging Voltage is 2 x Pulse Voltage

Modulator Types (5)

Series Resonant Converter Developed at LANL (Bill Reass) for SNS

Simplified Block Diagram

• Small size

IIL

- Regulation within pulse possible
- Installed at SNS

Con:

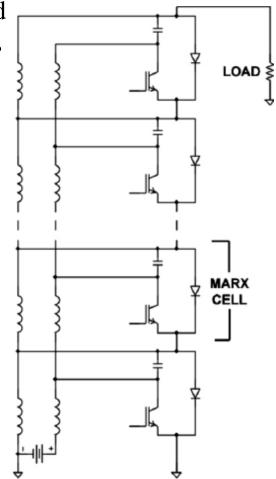
Pro:

• New technology (e.g. IGBTs at high switching frequency, nanochrystalline transformer material) needs experience (but see Pro)

Modulator Types (6)

Marx Generator

IIL


Developed by Erwin Marx in the 1920s, proposed with modifications to the original design by Leyh, SLAC

Pro:

- Compact
- Potential of cost savings

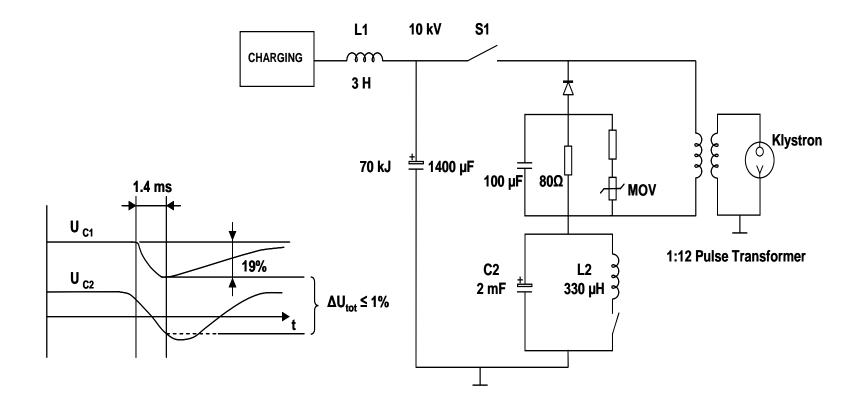
Con:

- No prototype exits
- Typical use: very high voltage, short pulses, low rep. Rate (single shot), no rectangular waveform

Modulator Types (7)

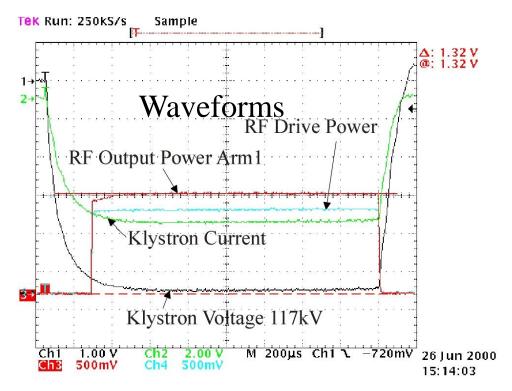
Other

İİL


- SMES superconducting magnetic energy storage (FZ Karlsruhe now installed at DESY)
- Induction type modulator
- Blumlein
- Switch mode PS
- Combinations of all already mentioned

TESLA Modulator Requirements

	Typical	Maximum
Vlustron Cun Voltago	1 1 5 1-17	130kV
Klystron Gun Voltage:	115kV	
Klystron Gun Current:	130A	150A
High Voltage Pulse Length:	<1.7ms	1.7ms
High Voltage Rise Time (0-99%):	<0.20ms 0.2ms	
High Voltage Flat Top (99%-99%):	1.37ms	1.5ms
Pulse Flatness During 1.4ms Flat Top:	$< \pm 0.5\%$	±0.5%
Pulse-to-Pulse Voltage fluctuation:	$< \pm 0.5\%$	±0.5%
Energy Deposit in Klystron		
in Case of Gun Spark:	<20J	20J
Pulse Repetition Rate	5Hz	10Hz
Transformer-Ratio:	1:12	


Bouncer Modulator Principle

IIL

• The linear part of the oscillation of the bouncer circuit is used to compensate the voltage droop caused by the discharge of the main storage capacitor

The FNAL Modulator for TTF


- 3 modulators have been developed, built and delivered to TTF by FNAL since 1994
- They are continuosly in operation under different operation conditions

FNAL Modulator at TTF

Industry made Modulator for TTF (1)

HVPS and Pulse Forming Unit

IGCT Stack

- Industry made subunits (PPT, ABB, FUG, Poynting)
- Constant power power supply for suppression of 10Hz repetition rate disturbances in the mains

iii


- Compact storage capacitor bank with self healing capacitors
- IGCT Stack (ABB); 7 IGCTs in series, 2 are redundant

Industry made Modulator for TTF (2)

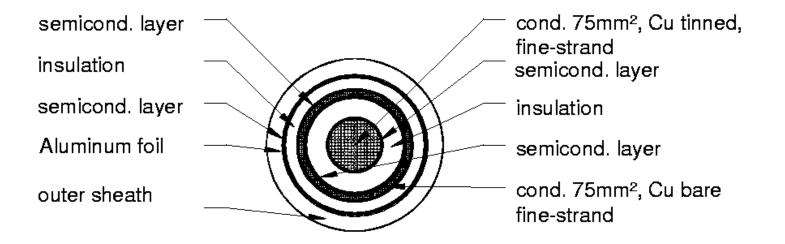
- Low leakage inductance pulse transformer (ABB) L<200mH resulting in shorter HV pulse rise time of <200ms
- Light Triggered Thyristor crowbar avoiding mercury of ignitrons

Pulse Transformer

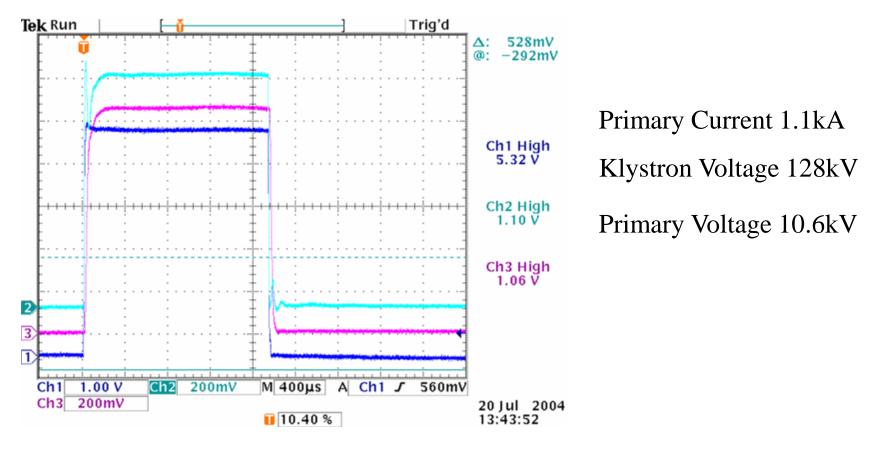
- 10 Modulators have been built, 3 by FNAL and 7 together with industry
- 9 modulators are in operation
- 10 years operation experience exists
- Many vendors for modulator components are available

•Modulators must together with pulse transformer generate HV pulses up to 120kV and 140A, 1.57ms pulse length and 10Hz (30Hz) repetition rate.

•The top of the pulse must be flat within 1%.


 Pulse step modulator has been chosen. It has been succesfully tested at the MTF at DESY Zeuthen.

- Transmission of HV pulses (10kV, 1.6kA, 1.57ms, 10Hz from the pulse generating unit (modulator hall) to the pulse transformer (accelerator tunnel) if PGU and PT are separated
- Length ~3km (depends on site and tunnel layout)
- Impedance of 25 Ohms (4 cable in parallel will give 6.25 Ohms in total) to match the klystron impedance
- Triaxial construction (inner conductor at 10kV, middle conductor at 1kV, outer conductor at ground)


HV Pulse Cable (2)

ΪŪ

Diameter 30mm Dielectric material: XLPE

HV Pulse Cable (3)

- Test with 1.5km long cables and a 5MW klystron show the feasibility of pulse transmission
- Remaining problem: EMI needs investigation

IIL