Lecture A3a: Damping Rings

Low vertical

emittance tuning Yannis PAPAPHILIPPOU

 Accelerator and Beam Physics group Beams Department CERNEighth International Accelerator School for Linear Colliders 4-15 December 2013, Antalya

- Equilibrium emittances and optics conditions for different cells
\square FODO
\square Double Bend Achromat (DBA)
\square Theoretical Minimum Emittance (TME)
\square Multi-Bend Achromat (MBA)
\square Examples from low emittance rings
\square The ILC and CLIC DR optics
■ Non-linear dynamics
\square Chromaticity and correcting sextupoles
\square Non-linear dynamics due to sextupoles and multipulos
\square Dynamic aperture
\square Frequency map analysis

Quantum vertical emittance

■ Photons are emitted with a distribution with an angular width $1 / \gamma$ about the direction of motion of the electron
■ This leads to some vertical "recoil" that excites vertical betatron motion, resulting in a non-zero vertical emittance

$$
\varepsilon_{y, \text { min }}=\frac{13}{55} \frac{C_{q}}{j_{y} I_{2}} \int \frac{\beta_{y}}{|\rho|^{3}} d s
$$

■ For an isomagnetic lattice this can be written as

$$
\varepsilon_{y}=0.09 \mathrm{pm} \cdot \frac{\left\langle\beta_{y}\right\rangle_{\mathrm{Mag}}}{\rho}
$$

■ Some examples
\square ASLS: 0.35 pm
\square PETRA-III: 0.04 pm
\square ILC DR: 0.1 pm
\square CLIC DR: 0.1 pm

Some factor higher than vertical emittance requirement of both CLIC and ILC

■ Vertical emittance in a flat storage ring is dominated by two effects
\square Residual vertical dispersion coupling longitudinal and vertical motion
\square Betatron coupling, which couples horizontal and vertical motion

- The dominant causes of residual vertical dispersion and betatron coupling are magnet alignment errors, in particular
\square Tilts of the dipoles around the beam axis
\square Vertical alignment errors on the quadrupoles
\square Tilts of the quadrupoles around the beam axis
\square Vertical alignment errors of the sextupoles

Vertical Steering Error

\square Vertical steering error may be generated
\square Dipole roll producing an horizontal dipole component

$$
\theta_{j}=\frac{B_{j} l_{j} \sin \phi_{j}}{B \rho}
$$

\square Vertical alignment errors on the quadrupoles so that there is a horizontal magnetic field at the location of the reference trajectory. Consider the displacement of a particle $\boldsymbol{\delta} \boldsymbol{y}$ from the ideal orbit. The horizontal field in the quadrupole is

$$
B_{x}=G \bar{y}=G(y+\delta y)=\underbrace{G y}_{\text {quadrupole }}+\underbrace{G \delta y}_{\text {dipole }}
$$

Coupling error

■ Coupling errors lead to transfer of horizontal betatron motion and dispersion into the vertical plane in both cases, the result is an increase in vertical emittance.
■ Coupling may result from rotation of a quadrupole, so that the field contains a skew component

- A vertical beam offset in a sextupole has the same effect as a skew quadrupole. The sextupole field for the displacement of a particle $\boldsymbol{\delta} \boldsymbol{y}$ becomes
$B_{x}=k_{2} x \bar{y}=k_{2} x y+\underbrace{\text { skew quadrupole }}_{\underbrace{k_{2} x \delta y}}$
$B_{y}=\frac{1}{2} k_{2}\left(x^{2}-\bar{y}^{2}\right)=-k_{2} y \delta y+\frac{1}{2} k_{2}\left(x^{2}-y^{2}\right)-\frac{1}{2} k_{2} \delta y^{2}$

Effect of single dipole

- Consider a single dipole kick $\theta=\delta u_{0}^{\prime}=\delta u^{\prime}\left(s_{0}\right)=\frac{\delta(B l)}{B \rho}$ at $s=s_{0}$
- The coordinates before and after the kick are
$\binom{u_{0}}{u_{0}^{\prime}-\theta}=\mathcal{M}\binom{u_{0}}{u_{0}^{\prime}}$

with the 1-turn transfer matrix

$$
\mathcal{M}=\left(\begin{array}{cc}
\cos 2 \pi Q+\alpha_{0} \sin 2 \pi Q & \beta_{0} \sin 2 \pi Q \\
-\gamma_{0} \sin 2 \pi Q & \cos 2 \pi Q-\alpha_{0} \sin 2 \pi Q
\end{array}\right)
$$

- The final coordinates ar $u_{0}=\theta \frac{\beta_{0}}{2 \tan \pi Q}$

$$
u_{0}^{\prime}=\frac{\theta}{2}\left(1-\frac{\alpha_{0}}{\tan \pi Q}\right)
$$

- For any location around the ring it can be shown that

$$
u(s)=\theta \frac{\sqrt{\beta(s) \beta_{0}}}{\underbrace{2 \sin (\pi Q)}} \cos \left(\pi Q-\left|\psi(s)-\psi_{0}\right|\right)
$$

Maximum distortion amplitude

Transport of orbit distortion due to dipole kick

■ Consider a transport matrix between positions 1 and 2

$$
\mathcal{M}_{1 \rightarrow 2}=\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)
$$

■ The transport of transverse coordinates is written as

$$
\begin{aligned}
u_{2} & =m_{11} u_{1}+m_{12} u_{1}^{\prime} \\
u_{2}^{\prime} & =m_{21} u_{1}+m_{22} u_{1}^{\prime}
\end{aligned}
$$

- Consider a single dipole kick at position $1 \quad \theta_{1}=\frac{\delta(B l)}{B \rho}$

■ Then, the first equation may be rewritten

$$
u_{2}+\delta u_{2}=m_{11} u_{1}+m_{12}\left(u_{1}^{\prime}+\theta_{1}\right) \rightarrow \delta u_{2}=m_{12} \theta_{1}
$$

- Replacing the coefficient from the general betatron matrix

$$
\begin{aligned}
\delta u_{2} & =\sqrt{\beta_{1} \beta_{2}} \sin \left(\psi_{12}\right) \theta_{1} \\
\delta u_{2}^{\prime} & =\sqrt{\frac{\beta_{1}}{\beta_{2}}\left[\cos \left(\psi_{12}\right) \theta_{1}-\alpha_{2} \sin \left(\psi_{12}\right)\right]}
\end{aligned}
$$

Integer and half integer resonance

- Dipole perturbations add-up in consecutive turns for $Q=n$
- Integer tune excites orbit oscillations (resonance)

Kick

$$
\delta u_{2}=\sqrt{\beta_{1} \beta_{2}} \sin \left(\psi_{12}\right) \theta_{1}
$$

- Dipole kicks get cancelled in consecutive turns for $Q=n / 2$
- Half-integer tune cancels orbit oscillations

$$
\delta u_{2}^{\prime}=\sqrt{\frac{\beta_{1}}{\beta_{2}}}\left[\cos \left(\psi_{12}\right) \theta_{1}-\alpha_{2} \sin \left(\psi_{12}\right)\right]
$$

Global orbit distortion

- Orbit distortion due to many errors
$u(s)=\frac{\sqrt{\beta(s)}}{2 \sin (\pi Q)} \int_{s}^{s+C} \theta(\tau) \sqrt{\beta(\tau)} \cos (\pi Q-|\psi(s)-\psi(\tau)|) d \tau$
- For a quadrupole of integrated focusing strength $\left(k_{1} L\right)$, vertically misaligned from the reference trajectory by ΔY, the steering is

$$
\frac{d \theta}{d s}=\left(k_{1} L\right) \Delta Y
$$

- Squaring the previous equation and averaging over many (uncorrelated) random alignment errors, we obtain

$$
\left\langle\frac{y_{c o}^{2}(s)}{\beta_{y}(s)}\right\rangle=\frac{\left\langle\Delta Y^{2}\right\rangle}{8 \sin ^{2} \pi \nu y} \sum_{\text {quads }} \beta_{y}\left(k_{1} L\right)^{2}
$$

- "Orbit amplification factors" are commonly between 10 to 100
- This is a statistical quantity, over many different sets of misalignments and the orbit distortion may be much larger or smaller than expected from the rms quadrupole alignment error estimate

Estimated sensitivity: 19.1651 (simulation), 15.23 (analytical)

Reminder: General multi-pole

■ Equations of motion including any multi-pole error term, in both planes

$$
\frac{d^{2} \mathcal{U}_{x}}{d \phi_{x}^{2}}+\nu_{0 x}^{2} \mathcal{U}_{x}=\overline{b_{n, r}}\left(\phi_{x}\right) \mathcal{U}_{x}^{n-1} \mathcal{U}_{y}^{r-1}
$$

\square Expanding perturbation coefficient in Fourier series and inserting the solution of the unperturbed system on the rhs gives the following series:

$$
\begin{aligned}
& \mathcal{U}_{x}^{n-1} \approx \mathcal{U}_{0 x}^{n-1}=\sum_{\substack{q_{x}=-n+1}}^{n-1} \bar{W}_{q_{x}} e^{i i_{x} \nu_{0} \phi_{x}} \\
& \mathcal{U}_{y}^{r-1} \approx \mathcal{U}_{0 y}^{r-1}=\sum_{q_{y}=-r+1}^{r-1} \bar{W}_{q_{y}} e^{i q_{y} \nu_{0 y} \phi_{x}} \\
& \text { ecomes }
\end{aligned}
$$

\square The equation of motion becomes

$$
\frac{d^{2} \mathcal{U}_{x}}{d \phi_{x}^{2}}+\nu_{0 x}^{2} \mathcal{U}_{x}=\sum_{m, q_{x}, q_{y}} \overline{b_{n r m}} W_{q_{x}}^{x} W_{q_{y}}^{y} e^{i\left(m+q_{x} \nu_{0 x}+q_{y} \nu_{0 y}\right) \phi_{x}}
$$

■ In principle, same perturbation steps can be followed for getting an approximate solution in both planes

■ For a localized skew quadrupole we have

$$
\frac{d^{2} \mathcal{U}_{x}}{d \phi_{x}^{2}}+\nu_{0 x}^{2} \mathcal{U}_{x}=\overline{b_{1,2}}\left(\phi_{x}\right) \mathcal{U}_{y}
$$

\square Expanding perturbation coefficient in Fourier series and inserting the solution of the unperturbed system gives the following equation:

$$
\frac{d^{2} \mathcal{U}_{x}}{d \phi_{x}^{2}}+\nu_{0 x}^{2} \mathcal{U}_{x}=\sum_{m=-\infty}^{\infty} \sum_{q_{y}=-1}^{q_{y}=1} \overline{b_{12 m}} W_{q_{y}}^{y} e^{i\left(m+q_{y} \nu_{0 y}\right) \phi_{x}} \quad \text { with } \quad W_{0}^{y}=0
$$

Linear sum resonance

Linear difference resonance

- In the case of a thin skew quad: $\delta Q \propto\left|k_{s}\right| \sqrt{ } \beta_{x} \beta_{y}$
- Coupling coefficients

$$
\left|C_{ \pm}\right|=\left|\frac{1}{2 \pi} \oint d s k_{s}(s) \sqrt{\beta_{x}(s) \beta_{y}(s)} e^{i\left(\psi_{x} \pm \psi_{y}-\left(Q_{x} \pm Q_{y}-q_{ \pm}\right) 2 \pi s / C\right)}\right|
$$

Correction with closest tune

\square Tunes observed on difference resonance
$Q_{x}-Q_{y}=q$:
$Q_{1 / 2}=\frac{1}{2}\left(Q_{x}+Q_{y}\right) \pm \frac{1}{2}\left|\kappa_{-}\right|$

■ Betatron coupling from difference resonance ${ }_{0, \Omega}$
$\left|\kappa_{-}\right|=\frac{1}{2 \pi}\left|\delta d s a_{2}(s) \sqrt{\beta_{x}(s) \beta_{y}(s)} e^{i\left(\phi_{x}(s)-\phi_{y}(s)-\left(Q_{x}-Q_{y}+q\right) 2 \pi / C\right)}\right|{ }_{0.01}$
■ Working point off resonance (but close)

$$
\Delta Q_{-}=Q_{x}-Q_{y}-q=\sqrt{\left(Q_{1}-Q_{2}\right)^{2}-\left|\kappa_{-}\right|^{2}}
$$

$\square Q_{x y}$ uncoupled, $Q_{1 / 2}$ observed tunes

- Vertical emittance

$$
\varepsilon_{y}=\varepsilon_{x} \frac{\left|\kappa_{-}\right|^{2}}{\left|\kappa_{-}\right|^{2}+\left(\Delta Q_{-}\right)^{2} / 2}
$$

Caution
\square assumes betatron coupling \gg vertical dispersion
\square assumes difference >> sum coupling resonance
\square single resonance approximation

Vertical dispersion

- The equation of motion for a particle with momentum P is

$$
\frac{d^{2} y}{d s^{2}}=\frac{e}{P} B_{x}
$$

- For small energy deviation δ, P is related to the reference momentum by $P \approx(1+\delta) P_{0}$
■ We can write for the horizontal field (to first order in the derivatives)

$$
B_{x} \approx B_{0 x}+y \frac{\partial B_{x}}{\partial y}+x \frac{\partial B_{x}}{\partial x}
$$

■ If we consider a particle following an off-momentum closed orbit, so that:

$$
y=\eta_{y} \delta, \quad \text { and } \quad x=\eta_{x} \delta
$$

- Combining the above equations, we find to first order in

$$
\frac{d^{2} \eta_{y}}{d s^{2}}-k_{1} \eta_{y} \approx-k_{0 s}+k_{1 s} \eta_{x}
$$

The previous equation is similar to the equation of the closed orbit

$$
\frac{d^{2} y_{c o}}{d s^{2}}-k_{1} y_{c o} \approx-k_{0 s}+k_{1 s} x_{c o}
$$

■ It is the reasonable to generalize the relationship between the closed orbit and the quadrupole misalignments, to find
$\left\langle\frac{\eta_{y}^{2}}{\beta_{y}}\right\rangle=\frac{\left\langle\Delta Y_{Q}^{2}\right\rangle}{8 \sin ^{2} \pi \nu_{y}} \sum_{\text {quads }} \beta_{y}\left(k_{1} L\right)^{2}+\frac{\left\langle\Delta \Theta_{Q}^{2}\right\rangle}{8 \sin ^{2} \pi \nu_{y}} \sum_{\text {quads }} \eta_{x}^{2} \beta_{y}\left(k_{1} L\right)^{2}+$

$$
\frac{\left\langle\Delta Y_{S}^{2}\right\rangle}{8 \sin ^{2} \pi \nu_{y}} \sum_{\text {sexts }} \eta_{x}^{2} \beta_{y}\left(k_{2} L\right)^{2}
$$

- Skew dipole terms assumed to come from vertical alignment errors on the quads $\mathbf{Q i}$, and the
- Skew quads assumed to come from
\square Tilts on the quadrupoles
\square Vertical alignment errors on the sextupoles,
■ All alignment errors are considered uncorrelated.

The natural emittance in the vertical plane can be written as the horizontal one

$$
\varepsilon_{y}=C_{q} \gamma^{2} \frac{I_{5 y}}{j_{y} I_{2}}
$$

- the synchrotron radiation integrals are given by

$$
I_{5 y}=\oint \frac{\mathcal{H}_{y}}{|\rho|^{3}} d s \approx\left\langle\mathcal{H}_{y}\right\rangle \oint \frac{1}{|\rho|^{3}} d s=\left\langle\mathcal{H}_{y}\right\rangle I_{3} \text { and } I_{2}=\oint \frac{1}{\rho^{2}} d s
$$

with

$$
\mathcal{H}_{y}=\gamma_{y} \eta_{y}^{2}+2 \alpha_{y} \eta_{y} \eta_{p y}+\beta_{y} \eta_{p y}^{2}
$$

Damping rings, Linear Collider School 2013
■ Then the vertical emittance is $\varepsilon_{y} \approx C_{q} \gamma^{2}\left\langle\mathcal{H}_{y}\right\rangle \frac{I_{3}}{j_{y} I_{2}}$ or in terms of the energy spread $\varepsilon_{y} \approx \frac{j_{z}}{j_{y}}\left\langle\mathcal{H}_{y}\right\rangle \sigma_{\delta}^{2}$, with $\sigma_{\delta}^{2}=C_{q} \gamma^{2} \frac{I_{3}}{j_{z} I_{2}}$ - Note that $\left\langle\frac{\eta_{y}^{2}}{\beta_{y}}\right\rangle=\frac{1}{2}\left\langle\mathcal{H}_{y}\right\rangle$ and finally

$$
\varepsilon_{y} \approx 2 \frac{j_{z}}{j_{y}}\left\langle\frac{\eta_{y}^{2}}{\beta_{y}}\right\rangle \sigma_{\delta}^{2}
$$

■ Measurement or estimation of BPM roll errors to avoid "fake" vertical dispersion measurement.

- Realignment of girders / magnets to remove sources of coupling and vertical dispersion.
■ Model based corrections:
- Establish lattice model: multi-parameter fit to orbit response matrix (using LOCO or related methods) to obtain a calibrated model.
- Use calibrated model to perform correction or to minimize derived lattice parameters (e.g. vertical emittance) in simulation and apply to machine.
- Application to coupling control: correction of vertical dispersion, coupled response matrix, resonance drive terms using skew quads and orbit bumps, or direct minimization of vertical emittance in model.
- Model independent corrections:
\square empirical optimization of observable quantities related to coupling (e.g. beam size, beam life time).
- Coupling control in operation: on-line iteration of correction

Magnet

- Magnet misalignment = source of coupling
\square steps between girders: vertical dispersion from vertical corrector dipoles
- BBGA (= beam based girder alignment)
\square Misalignments from orbit response
- BAGA (= beam assisted girder alignment)
\square girder misalignment data from survey
\square girder move with stored beam and running orbit feedback
\square vertical corrector currents confirm move.
- Single resonance approximation for large machines
\square high periodicity, few systematic resonances
\square working point nearer to difference than to sum coupling resonance e.g. ESRF 36.45/13.39

■ Lattice model from ORM or TBT data
\square assume many error sources for fitting (quad rolls etc.)
\square calculate difference and sum coupling resonance drive terms (RDT) and vertical dispersion.

- Response matrix for existing skew quad correctors
- Empirical weights a_{1}, a_{2} for RDTs vs. vertical dispersion

$$
\left(\begin{array}{c}
a_{1} \vec{f}_{1001} \\
a_{1} \vec{f}_{1010} \\
a_{2} \vec{D}_{y}
\end{array}\right) \text { meas }=-\mathbf{M} \vec{J}_{c}
$$

\Rightarrow Vertical emittance $2.6 \pm 1.1 \mathrm{pm}$
\square Definition: mean and rms of 12 beam size monitors

$$
f_{\substack{1001 \\ 1010}}=\frac{\sum_{w}^{W} J_{w, 1} \sqrt{\beta_{x}^{w} \beta_{y}^{w}} e^{i\left(\Delta \phi_{w, x} \mp \Delta \phi_{w, y}\right)}}{4\left(1-e^{2 \pi i\left(Q_{u} \mp Q_{v}\right)}\right)}
$$

LOCO (Linear Optics from Closed Orbit)

- Applied to general optics correction and to coupling control

■ Low statistical error: response matrix = many, highly correlated data
■ Low measurement error: high precision of BPMs in stored beam mode
Fit parameters (almost any possible)

- Quadrupole gradients and roll errors
- BPM and corrector calibrations and roll errors

■ Sextupole misalignments
■ Not possible: dipole errors \diamond quad misalignments

Vertical emittance minimization

- Minimizing coupled response matrix using existing skew quad correctors does not necessarily give the lowest vertical emittance
■ Establish model with many skew quad error sources
■ Use existing skew quads to minimize vertical emittance in model
- Example: SSRF

	Initial	20 skews	60 skews	After realignment
Beam profile				
Coupling (LOCO)	0.44%	0.26%	0.18%	0.022%
ertical Emittance (pmrad)	17	10	7	0.9

\square more LOCO calibrated model vertical emittances:

- ASLS
0.3 pm
(meas. $0.8 \pm 0.1 \mathrm{pm}$)
\square ALS 1.3 pm (meas. $\sim 2 \mathrm{pm}$)

■ Principle: double linear system
■ Measurement vectors

- vertical orbit
- vertical dispersion
- off-diagonal (coupling)...
...parts of the orbit response matrix
■ Knob vectors
- vertical correctors
- horizontal correctors
- skew quadrupoles
- and BPM roll errors

■ Weight factors (α, ω)

- Supresss vertical dispersion and coupling
\square DIAMOND (1.7 pm)
\square SLS (1.3 pm)

Model independent methods

■ Overcome model deficiencies (and BPM limitations)
\square potential to further improve the best model based solutions

- Requires stable and precise observable of performance
\square beam size or lifetime as observables related to vertical emittance
\square beam-beam bremsstrahlung rate as observable of luminosity
- requires actuators (knobs)
\square skew quadrupoles and orbit bumps for vertical emittance minimization
\square sextupole correctors for lifetime optimization
\square beam steerers for beam-beam overlap
- optimization procedures
\square capable to handle noisy penalty functions (filtering, averaging)
\square algorithms: random walk, simplex, genetic (MOGA) etc.
\square needs good starting point: best model based solution
\square works in simulation and in real machine
- Coupling minimization at SLS observable: vertical beam size from monitor
- Knobs: 24 skew quadrupoles
- Random optimization: trial \& error (small steps)
- Start: model based correction: $\mathrm{e}_{\mathrm{y}}=1.3 \mathrm{pm}$
- 1 hour of random optimization $\mathrm{e}_{\mathrm{y}} \rightarrow 0.9 \pm 0.4 \mathrm{pm}$
- Measured coupled response
 matrix off-diagonal terms were reduced after optimization
- Model based correction limited by model deficiencies rather than measurement errors.

Coupling control in operation

■ Keep vertical emittance constant during ID gap changes

- Example from DIAMOND
- Offset δ SQ to ALL skew quads generates dispersion wave and increases vert. emittance without coupling.
- Skew quads from LOCO for low vert .emit. of $\sim 3 \mathrm{pm}$
- Increase vertical emit to 8 pm by increasing the offset δ SQ
\square Use the relation between vertical emittance and δ SQ in a slow feedback loop (5 Hz)

Vertical emittance measurements

Vertical beam size monitor

■ Gives local apparent emittance $=\left[\sigma_{y}(s)\right]^{2} / \beta_{y}(s)$

- Requires beta function measurement
\square [dispersion \& energy spread measurement too]
■ Different methods (e.g. r-polarization)
■ Model based evaluation of measurement
\square e.g. diffraction effects in imaging

Pinhole camera images before/after coupling correction at DIAMOND

1-D X-ray diode array camera at CESR-TA

■ Derived approximate formulae for estimating the sensitivity of the vertical emittance to a range of magnet alignment errors
■ Described briefly some methods for accurate emittance computation in storage rings with specified coupling and alignment errors

- Outlined some of the practical techniques used for low-emittance tuning in actual low emittance rings in operation

