Beam Instrumentation for Linear Colliders

3hours B-course at the 2013 LC school Antalya, Hermann Schmickler, CERN-BE-BI

With a big "Thank You" to T. Lefevre for many splendid slides....

- What are the main Instrumentation needs?
- Details on:
- Measurement of nm beam positions
- Measurement of um transverse beam sizes
- Measurement of fs-scale long profiles
- Beam synchronization at the fs-scale
- Keeping the beams in collision

Collider luminosity [cm⁻² s⁻¹] is approximately given by

- n_b = bunches / train

$$H_D''$$
 = beam-beam enhancement factor

A linear collider uses the beam pulses only once:

- Need to accelerate lots of particles
- Need very small beam sizes

The small beam size challenge

LEP: $\sigma_x \sigma_y \approx 130 \times 6 \ \mu m^2$ **ILC**: $\sigma_x \sigma_y \approx 500 \times (3-5) \ nm^2$

T. Lefevre

"Beam Instrumentation for Linear Collider" - 2nd Ditanet School on Beam diagnostic - Stockholm–2011

Luminosity issue with intense beams - Disruption

Field of the opposite particle will distort the other beam during collision:

- Pinch effect (can become instable if two strong)
- Beam-beam deflections use to adjust beam overlap and luminosity

beam-beam characterised by **Disruption Parameter**:

$$D_{x,y} = \frac{2r_e N \sigma_z}{\gamma \sigma_{x,y} (\sigma_x + \sigma_y)}$$

 $\sigma_{\rm z}$ = bunch length

Enhancement factor (typically $H_D \sim 1.5 \div 2$) is given by:

$$H_{Dx,y} = 1 + D_{x,y}^{1/4} \left(\frac{D_{x,y}^3}{1 + D_{x,y}^3} \right) \left[\ln\left(\sqrt{D_{x,y}} + 1\right) + 2\ln\left(\frac{0.8\beta_{x,y}}{\sigma_z}\right) \right]$$

Luminosity issue with intense beams - Disruption

Luminosity issue with intense beams - Beamstrahlung

• Generation of Synchrotron Radiation photons of particles in the strong EM field of the opposite bunch

• High energy Beamstralung photons can convert in strong field into e⁺/e⁻ pairs: background for the detector

Coherent e⁺e⁻ pairs

- Direct photons conversion in strong fields
- Negligible for ILC but high for CLIC : Few 10⁸ particles per Bunch crossing

Incoherent e⁺e⁻ pairs

- Photons interacting with other electron/photon
- Few 10⁵ particles/Bunch crossing

<u>rms relative energy loss</u> <u>induced by Beamstrahlung</u>

$$\delta_{BS} = 0.86 \frac{er_e^3}{2m_0 c^2} \left(\frac{E_{cm}}{\sigma_z}\right) \frac{N^2}{\left(\sigma_x + \sigma_y\right)^2}$$

we would like to make $(\sigma_x \sigma_y)$ small to maximise luminosity and keep $(\sigma_x + \sigma_y)$ large to reduce δ_{SB}

Trick: use "flat beams" with $\sigma_x >> \sigma_v$

$$\delta_{BS} \propto \left(rac{E_{cm}}{\sigma_z}
ight) rac{N^2}{\sigma_x^2}$$

Rule:

- Make σ_{y} as small as possible to achieve high luminosity.

 $\delta_{BS} \sim 2.4\%$ @ ILC -- $\delta_{BS} \sim 29\%$ @ CLIC

Hour glass effect – Bunch length

For achieving small Beta function (small beam size) at IP, the beta function rapidly increases as the particle move away from the collision point

Variation of beam size along the bunch

Hour glass effect – Bunch length

<u>Rule:</u> Keep $\beta_y \sim \sigma_z$

A final luminosity scaling for Linear collider ?

$$L \propto \frac{\eta_{RF} P_{RF}}{E_{cm}} \sqrt{\frac{\delta_{BS}}{\varepsilon_{n,y}}} H_D \quad \text{with} \quad \beta_y \approx \sigma_z$$

- high RF-beam conversion efficiency η_{RF} and RF power P_{RF}
- small normalised vertical emittance $\varepsilon_{n,v}$
- strong focusing at IP (small β_v and hence small σ_z)

- Generation of small emittance
- Conservation of small emittance
- Generation and acceleration of short bunches

damping rings

wake-fields, alignment, stability

Bunch compressor

What's in the CLIC CDR for BI?

Contraction of the second seco		DB Instruments	Surface	Tunnel	Tota	l I
		Intensity	38	240		278
797 klystrons	Y Y	Position	1834	44220		46054
15 MW, 139 μs	lerator	Beam Size	32	768		800
2.38 GeV, 1.0 G	6Hz	Energy	18	192		210
≺ 2.5 km		Energy Spread	18	192		210
	delay loop CR2	Bunch Length	24	288		312
Drive Beam	CR1	Beam Loss	1730	44220		45950
TA e ⁻ main linac, 1	2 GHz, 100 MV/m, 21.02 km	IP 2.75 KM	e ⁺ main lin	ac		
CR combiner ring	40.5 KIII	MB Instrume	ents Surf	ace Tun	nel	Total
TA turnaround DR damping ring		Intensity		86	98	184
PDR predamping ring BC bunch compressor BDS beam delivery system IP interaction point dump		Position		1539	5648	7182
		Beam Size		34	114	148
		BCT Energy		19	54	/:
	e⁻ injector, 2.86 GeV PDR 398 m 421 r	Bunch Length		19	4 58	23
		R Beam Loss		1936	5854	779
		Beam Polarizati	on	11	6	1
		Tune		6	0	-

LCWS11

Beam Position Monitors - Baseline

Machine Sub-Systems		Intensity (A)	Train duration (ns) / Bunch frequency (GHz)	Accuracy / Resolution (um)	Time Resolution (ns)	Quantity	Beam aperture (mm)
			Main Bean	n			
e ⁻ & e ⁺ injector Comp	olex	0.5	156 / 1	100 / 50	10	83	40
Pre-Damping Rings		0.5	156 / 1	tbd./ 20	10	600	20 / 9
					Turn by turn		
Damping Rings		0.5	156 / 1	tbd./ 2	10	600	20 / 9
High ac	curac	v (511m) re	esolution (50nm) B	PM in Main I	inac and B		
RTML	curac					1424	various
Main Linac 1		156 / 2	5 / 0.05	10	4196		
Beam Delivery Syster	m	1	156 / 2	5 / 0.05	10	600	
Spent Beam Line		1	156 / 2	tbd / 1000	100	12	various
Drive Beam							
Various range of beam pipe diameters from 4mm to 200mm all over 660 40							40
the complex (to minimize registive welkefield effects)					210	80	
the complex (iects)			
Transfer to Tunnel		100	24 x 240ns / 12	40 / 10	10	872	200
Turn around		100	240ns / 12	40 / 10	10	1920	40
Decelerator		100	240ns / 12	20 / 2	10	41484	26
Dump lines		100	240ns / 12	20 / 2	10	96	40
Very high numbers of BPMs for the DB decelerator							

October 2011 - T. Lefevre

LCWS11

Status of the CLIC instrumentation

Beam Position Monitors - Baseline

Design by Manfred Wendt & co (FNAL)

Machine	Quantity	Technology choice				
Sub-Systems		Pick-up	Processor			
	Main Beam					
e ⁻ & e ⁺ injector Complex	83	Button 6mm	Direct samplir			
Pre-Damping rings	600	Button 6mm	DR type			
Damping rings	600	Button 6mm	DR type			
RTML	1424	Button 6mm	Direct samplir			
Main Linac and Beam Delivery system	4796	14GHz Cavity BPM	Cavity type			
Spent Beam Line	12	Button / Strip line	Direct sampling			

Drive Beam

660	Button 6mm	Downconverting	CERN
210	Button 6mm	Downconverting	CERN
872	Button 6mm	Direct sampling	CERN
1920	Button 6mm	Direct sampling	CERN
41484	Stripline 25mm	Downconverting	CERN
96	Stripline 25mm	Downconverting	CERN

Designed by Steve Smith

October 2011 - T. Lefevre

LCWS11

Status of the CLIC instrumentation

Transverse Profile Monitors - Baseline

LCWS11

Most of the systems based on the combined use of OTR screens and Laser Wire Scanners

- OTR used almost everywhere for commissioning (replaced by synchrotron radiation in

rings)

LCWS11

- LWS 1um resolution required for the Main beam

- LWS used in	the Driv	<u>e Beam in</u>	jector comple	<u>x for high char</u>	ge beams (full charge)
Machine	Quantity	Techr	nology choice	Place to be Tested	
Sub-Systems		Baseline	Alternatives		
	Ma	ain Beam			
e ⁻ & e ⁺ injector Complex	10		OTR	CERN	
Pre-Damping and Damping rings	8	XSR	LWS / OSR-PSF	Sync light sources	
				PSI, PETRA,	
RTML	70	OTR	OTR/OSR PSF	ATF2	
		LWS	XDR	CESR-TA	
Main Linac and Beam Delivery system	56	OTR	OTR-PSF	ATF2	
		LWS	XDR 🔨	CESR-TA	
Spent Beam Line	6	OTR	Scintillating screens	CERN	
	Dr	ive Beam			Non-interceptive monitor based on
DB source and Linac	10	OTR / LWS	ODR	FEL's	Diffraction radiation as a cheap
Frequency multiplication complex	20	OSR	XSR	Sync light sources	alternative to LWS for both Drive
				PSI, PETRA,	and Main Beams
Transfer to tunnel	2	OTR / LWS	ODR	FEL's	
Turn-arounds	96	OSR	XSR	Sync light sources	
				PSI, PETRA,	
Decelerator and Dump lines	672		OTR	CERN	

- Measurement of nm beam positions
- Measurement of um transverse beam sizes
- Measurement of fs-scale long profiles
- Beam synchronization at the fs-scale
- Keeping the beams in collision (IP feedback)

Conserving small Emittance along the Main Linac

Wakefields in accelerating structures (damping of high order mode)

Bunches passing through an accelerating structure off-centre excite high order modes which perturbs later bunches

- Tolerances for acc. Structures alignment
- Cavity alignment at the 300 μm level @ ILC compared to 5 μm @ CLIC
- Need wakefield monitor to measure the relative position of a cavity with respect to the beam

T. Lefevre "Beam Instrumentation for Linear Collider" - 2nd Ditanet School on Beam diagnostic - Stockholm–2011

Proposed correction scheme

- > Wakefield kicks from misaligned AS can be cancelled by another AS
- > One WFM per structure (142000 monitors) and mean offset of the 8 AS computed
- > WFM with 5um resolution
- > Need to get rid of the 100MW of RF power at 12GHz present in the structures

T. Lefevre "Beam Instrumentation for Linear Collider" - 2nd Ditanet School on Beam diagnostic - Stockholm–2011

WakeField Monitor design

Opposite ports signals are in phase

Opposite ports signal have opposite phase

When we substract the opposite port signals, the monopole mode is cancelled and the dipole mode amplitude is increased

F. Peauger

WakeField Monitor design

T. Lefevre

"Beam Instrumentation for Linear Collider" - 2nd Ditanet School on Beam diagnostic - Stockholm-2011

Conserving small Emittance along the Main Linac

- <u>Dispersive emittance dilutions : offset of quadrupoles</u>
 - Beam based alignment to define a precise reference using high precision BPM (50nm resolution)
 - Dispersion free-steering Align quadrupoles precisely
 - High resolution cavity BPM (50nm for CLIC)
 - Long linac \rightarrow large number of BPMs: 2000@ILC 4000@CLIC

T. Lefevre

"Beam Instrumentation for Linear Collider" - 2nd Ditanet School on Beam diagnostic - Stockholm-2011

Improving the Precision for Next Generation Accelerators

- Standard BPMs give intensity signals which need to be subtracted to obtain a difference which is then proportional to position
 - Difficult to do electronically without some of the intensity information leaking through
 - When looking for small differences this leakage can dominate the measurement
 - Typically 40-80dB (100 to 10000 in V) rejection \Rightarrow tens micron resolution for typical apertures
- Solution cavity BPMs allowing sub micron resolution
 - Design the detector to collect only the difference signal
 - Dipole Mode TM₁₁ proportional to position & shifted in frequency with respect to monopole mode

CERN

Today's State of the Art BPMs

- Obtain signal using waveguides that only couple to dipole mode
 - Further suppression of monopole mode

Prototype BPM for ILC Final Focus

Required resolution of 2nm (yes nano!) in a 6×12mm diameter beam pipe
 Achieved World Record (so far!) resolution of 8.7nm at ATF2 (KEK, Japan)

Hermann Schmickler – CERN Beam Instrumentation Group

Cavity BPM

- "Pillbox" cavity BPM
 - Eigenmodes:

$$f_{mnp} = \frac{1}{2\pi\sqrt{\mu_0\varepsilon_0}} \sqrt{\left(\frac{j_{mn}}{R}\right)^2 + \left(\frac{p\pi}{l}\right)^2}$$

- Beam couples to $E_z = CJ_1\left(\frac{j_{11}r}{R}\right)\cos \emptyset e^{i\omega t}$ dipole (TM₁₁₀) and monopole (TM₀₁₀) modes
- Common mode (TM₀₁₀) suppression by frequency discrimination
- Orthogonal dipole mode polarization (xy cross talk)
- Transient (single bunch) response (Q_L)
- Normalization and phase reference

T. Lefevre

"Beam Instrumentation for Linear Collider" - 2nd Ditanet School on Beam diagnostic - Stockholm-2011

Cavity BPM design steps

BPM Geometrical Dimensions

Waveguide to coaxial transition

BPM Cavity Modes

Waveguide Low-Q resonances

Multi-bunch Regime Rejection

Monopole Mode Coupling due to Mechanical Errors

Slot rotation causes the non zero projection of TM01 azimuth magnetic field component (Hφ) in the cavity to a longitudinal one (Hz) of TE10 mode in the waveguide. Small slot shift is equivalent to rotation with angle: α_x ~ arctan(Δx/Rslot). Therefore both slot rotation and shift cause strong magnetic coupling of monopole mode to waveguide.

2. Slot tilt causes the non zero projection of TM_{01} azimuth magnetic (H_{ϕ}) and longitudinal electric (E_z) filelds components in the cavity to a transverse (H_x) and vertical (E_y) components of TE_{10} mode in the waveguide. Because both H_x and E_y are close to zero near the waveguide wall tilt error causes the weak electric and weak magnetic coupling of monopole mode to waveguide.

Weak Electric Coupling

Weak Magnetic Coupling

TM₀₁ Mode Leak (tolerances calculations)

- Measurement of fs-scale long profiles
- Beam synchronization at the fs-scale
- Keeping the beams in collision (IP feedback)

Measuring small beam size in a Linear Collider

- Required high precision from the Damping ring to the Interaction Point (IP)
 - Beam energy ranges from 2.4GeV \rightarrow 1.5TeV
 - Tens of km of beam lines Big number of instruments
- Flat Beams ($\varepsilon_x >> \varepsilon_v$) : Think of a flat noodle !

- Small beam sizeHigh beam charge

	_ /
_	

	ILC	CLIC
Beam Charge (nC)	7875	190
Hor. Emittance (nm)	655	40
Ver. Emittance (nm)	5.7	1

High Charge Densities

 $> 10^{10} \text{ nC/cm}^2$

The thermal limit for 'best' material (C, Be, SiC) is 10⁶ nC/cm^2

T. Lefevre

"Beam Instrumentation for Linear Collider" - 2nd Ditanet School on Beam diagnostic - Stockholm–2011

'Beam Profile Horror Picture Show'

Intercepting devices limited to single (or few) bunch mode

T. Lefevre

"Beam Instrumentation for Linear Collider" - 2nd Ditanet School on Beam diagnostic - Stockholm-2011

High Resolution Imaging System using OTR

• Diffraction effect would determine the resolution limit of the measurements

$$\Delta x \ge \frac{\lambda \text{ (wavelength)}}{\theta \text{ (useful opening angle)}}$$

OTR angular distribution: Peak at 1/γ but large tails
 Problem for very high energy particles

• Aperture of the focussing lens : $\theta >> 1/\gamma$

X. Artru et al, NIM AB 145 (1998) 160-168

C. Castellano and V.A. Verzilov, Physical Review STAB 1, (1998) 062801

T. Lefevre "Beam Instrumentation for Linear Collider" - 2nd Ditanet School on Beam diagnostic - Stockholm–2011
High Resolution Imaging System using OTR

• Depth of field limits the resolution because the image source is not normal to the optical axis

"Beam Instrumentation for Linear Collider" - 2nd Ditanet School on Beam diagnostic - Stockholm–2011

• Imaging small beam size \rightarrow large magnification \rightarrow short Depth of field (Df)

T. Lefevre

"Beam Instrumentation for Linear Collider" - 2nd Ditanet School on Beam diagnostic - Stockholm-2011

Beam size monitoring with Diffraction Radiation

• Non destructive alternative for beam size measurement (not imaging anymore)

T. Lefevre

"Beam Instrumentation for Linear Collider" - 2nd Ditanet School on Beam diagnostic - Stockholm-2011

Approach for the beam size measurements

Assume a Gaussian beam profile

$$G(\overline{a_x}, \sigma_y) = \frac{1}{\sqrt{2\pi}}$$

$$G\left(\overline{a_x}, \sigma_y\right) = \frac{1}{\sqrt{2\pi}\sigma_y} \exp\left[-\frac{\left(\overline{a_x} - a_x\right)^2}{2\sigma_y^2}\right]$$

Beam size effect

Projected vertical polarization component

$$\overline{\mathbf{S}(\boldsymbol{\theta}_{y},\boldsymbol{\sigma}_{y})} = \int_{-\Delta\boldsymbol{\theta}_{x/2}}^{\Delta\boldsymbol{\theta}_{x/2}} \frac{d^{2}W(\boldsymbol{\theta}_{x},\boldsymbol{\theta}_{y},\boldsymbol{\sigma}_{y})}{d\omega d\Omega} d\boldsymbol{\theta}_{x}$$

 $\Delta \theta_x - x$ detector angular acceptance

Projection

Target configuration

A silicon wafer covered with a thin gold foil

Target configuration E. Chiadroni, et al., NIM B 266 (2008) 3789 E. Chiadroni, et al., DIPAC'09

Method for the beam size determination

Beam size monitoring with Diffraction Radiation

T. Lefevre

"Beam Instrumentation for Linear Collider" - 2nd Ditanet School on Beam diagnostic - Stockholm–2011

Project aim : Exp. Validation of ODR transverse profile measurements in a circular machine (CESR-Ta, Cornell)

To design and test an instrument to measure on the micron-scale the transverse (vertical) beam size for the Compact Linear Collider (CLIC) using incoherent Diffraction Radiation (DR) at UV/soft X-ray wavelengths.

Cornell Electron Storage Ring Test Accelerator (CesrTA) beam parameters:

	E (GeV)	σ _H (μm)	σ _v (μm)
CesrTA	2.1	320	~9.2
	5.3	2500	~65

D. Rubin et al., "CesrTA Layout and Optics", Proc. of PAC2009, Vancouver, Canada, WE6PFP103, p. 2751.

http://www.cs.cornell.ed⁴⁷

Project phases

Phase 1: (2013)

- UV Optical wavelengths
- Measurement of beam size $\sigma_v \leq 50 \ \mu m$
- Observation of beam lifetime

Phase 2: (2014-2016)

- Relocate experiment to beam waist in L3 straight section of CesrTA
- Soft x-rays
- Measurement of beam size $\sigma_v \leq 10 \ \mu m$

Vacuum chamber assembly

- LHS : CHESS operation
- RHS: DR experiment
- Optical system connected to DR viewport

- Gate valve to disconnect CESR vacuum for target changeover
- Target mechanism: rotation + translation IN/OUT

LHS = Left Hand Side RHS = Right Hand Side

- L = distance from source of DR to detector
- Compact optical system is in the prewave zone therefore a biconvex lens is used with detector in back focal plane to obtain the angular distribution.

(*Pre-wave zone effect in transition and diffraction radiation: Problems and Solutions -*P. V. Karataev).

"Bonding by molecular adhesion (either 'direct wafer bonding' or 'fusion bonding') is a technique that enables two substrates having perfectly flat surfaces (e.g., polished mirror surfaces) to adhere to one another, without the application of adhesive (gum type, glue, etc.)."

Coplanarity measurement:

PV	68.479	nm
rms	13.909	nm

Metrology by Winlight Optics

Patent US 8158013 B2

Identification of DR in target imaging

- DR intensity decays exponentially from slit edge
- SR intensity uniform over small regions
- From simulations, max SR intensity (vert. pol.) does not occur at slit edge

120

Х

100

140

160

180

34000

60

80

DR intensity [ph/e⁻]= k * SR intensity [ph/e⁻]

 $k \sim 50$ using real data from TR $k \sim 25$ using DR images

DR vert. pol. ~ 4.0×10^{-5} ph/e⁻ SR. vert. pol. ~ 6.3×10^{-7} ph/e⁻

T. Aumeyr et al., IBIC2013, WEPF18.

DR target imaging

- 2.1 GeV
- 1 mA single- bunch beam
- 400 nm DR observation wavelength

Theory-D. Xiang et al., Phys. Rev. ST Accel. Beams, 10 (2007) 062801.

Zemax-T. Aumeyr et al., IBIC2013, WEPF18.

Data broadening possibly due to:

- data taken for $\sigma_y \sim 20 \ \mu m$ theoretical model and Zemax : single $e^- \sigma_y \rightarrow 0$
- Polariser misalignment \rightarrow some horiz. pol. DR and synchrotron radiation (SR)
- 10 ± 2 nm bandwidth → data smearing (small)
- 15 ms exposure time (CesrTA rev. period $T = 2.56 \,\mu s$) \rightarrow smearing from beam jitter

Mask

Technical drawings by N. Chritin, Metrology by L. Remandet

- Silicon Carbide
- Laser machining
- Not etched (orientated perpendicular to beam)
- Mask aperture = 4 * target aperture
 → avoid destructive interference (ODRI)

Specification		Location 1 (in µm or in µrad)	Location 2 (in µm or in µrad)	
	Maximum to minimum	≈ 10 µm	≈ 80 µm	
	Tilt in X direction	0 μrad	-1897 µrad	
	Tilt in Y direction	0 μrad	-13913 µrad	

SRW simulations

Baseline solution for linear collider: high spatial resolution would rely on Laser Wire Scanner

Laser Beam

- λ_0 : Laser wavelength
- ω_0 : Laser waist size
- Z_R : Rayleigh range

Electrons Beam σ_y : ver. beam size σ_x : hor. beam size

• The number of X-rays produced is given by $N_{\text{interaction}} \approx \frac{\sigma \cdot N_e \cdot N_{laser}}{A}$ with A the interaction area, N_e and N_{laser} are the number of electrons and photons in A

T. Lefevre "Beam Instrumentation for Linear Collider" - 2nd Ditanet School on Beam diagnostic - Stockholm–2011

• High spatial resolution need very focused laser beam: Need a optimum Focusing system

Minimize spherical aberration using several lenses

T. Lefevre

"Beam Instrumentation for Linear Collider" - 2nd Ditanet School on Beam diagnostic - Stockholm–2011

Design for ATF2 LWS by G. Blair et al

FIG. 7. Color online. Diagram of the final focus lens.

Interface number	Shape	Radius [mm]	Thickness [mm]	From	To
1	Even asphere	117.126106	7.093310	Air	Silica
2	Spherical	-250.070725	1.987140	Silica	Air
3	Spherical	33.118324	5.309160	Air	Silica
4	Spherical	274.998672	17.985135	Silica	Air
5	Spherical	Infinity	12.700000	Air	Silica
6	Spherical	Infinity	24.075710	Silica	Vacuum

T. Lefevre

"Beam Instrumentation for Linear Collider" - 2nd Ditanet School on Beam diagnostic - Stockholm-2011

Design for ATF2 LWS by G. Blair et al

T. Lefevre

"Beam Instrumentation for Linear Collider" - 2nd Ditanet School on Beam diagnostic - Stockholm-2011

• At high energy, the Compton cross section gets smaller

T. Lefevre

"Beam Instrumentation for Linear Collider" - 2nd Ditanet School on Beam diagnostic - Stockholm–2011

• At high energy (>10GeV) the detection system can be easily done either using the scattered photons or the scattered electrons

Now we treat in detail:

- Measurement of nm beam positions
- Measurement of um transverse beam sizes
- Measurement of fs-scale long profiles
- Beam synchronization at the fs-scale
- Keeping the beams in collision (IP feedback)

	ILC	CLIC linac	XFEL	LCLS
Beam Energy (GeV)	250	1500	20	15
Linac RF Frequency (GHz)	1.3	12	1.3	2.856
Bunch charge (nC)	3	0.6	1	1
Bunch Length (fs)	700	150	80	73

Short bunch length measurements

Optical Method

- 1. Produce visible light
- Analyse the light pulse using dedicated instruments

Bunch Frequency Spectrum

The shorter the bunches, the broader the bunch frequency spectrum

RF manipulation

Use RF techniques to convert time information into spatial information

Laser-based beam diagnostic

Using short laser pulses and sampling techniques

Can we do non intercepting, single shot, beam profile measurement in an easy way?

All in red \rightarrow 'perfect system'

Radiative techniques

'Convert particles into photons'

Coherent / Incoherent Radiation

•At wavelength much shorter than the bunch length, the radiation is emitted incoherently because each electron emits its radiation independently from the others without a defined phase relation

• A coherent enhancement occurs at wavelengths which are equal to or longer than the bunch length, where fixed phase relations are existing, resulting in the temporal coherence of the radiation

Radiation Spectrum

- $S(\omega)$ radiation spectrum
- $S_p(\omega)$ single particle spectrum
- N number of electrons in a bunch
- $F(\omega)$ longitudinal bunch form factor

$$F(\omega) = \left| \int_{-\infty}^{\infty} \rho(s) e^{-i\frac{\omega}{c}s} ds \right|^{2}$$

 $\rho(s)$ – Longitudinal particle distribution in a bunch

Optical Synchrotron Radiation

Cherenkov radiation

'Equivalent to the supersonic boom but for photons'

<u>Threshold process</u>: Particles go faster than light $\beta > 1/n$

The total number of photons proportional to the thickness of the Cherenkov radiator

<u>Limitations :</u>

•Using transparent material (Glass n=1.46) : thermal and radiation hardenss issues

•Time resolution limited by the length of the radiator

- n is the index of refraction (n>1)
- + $\boldsymbol{\beta}$ is the relative particle velocity
- θ_c is the Cherenkov light emission angle $\cos(q_c) = \frac{1}{bn}$

• d the length of the cherenkov radiator

Optical Transition Radiation

'TR is generated when a charged particle passes through the interface between two materials with different permittivity (screen in vacuum)'

CAS intermediate level - Trondheim-2013
Optical Diffraction Radiation

'DR is generated when a charged particle passes through an aperture or near an edge of dielectric materials, if the distance to the target h (impact parameter) satisfies the condition :

* Not enough photons in the visible for low energy particles : E < 1 GeV for a decent impact parameter (100 μm)

T. Muto et al, Physical Review Letters 90 (2003) 104801

Optical method with Incoherent radiation

'Convert particles into visible photons'

Time Correlated Single Photon Counting

<u>___</u> <u>n!</u>

• Sampling Method allowing very high dynamic range if you measure long enough

Avalanche photodiode have deadtime and are subject to afterpulsing
State of the art TDC typically limited to 10ps sampling

D.V. O'Connor, D. Phillips, Time-correlated Single Photon Counting, Academic Press, London, 1984 C.A. Thomas et al., Nucl. Instr. and Meth. A566 (2006) p.762

Time Correlated Single Photon Counting

Longitudinal profile of the entire LHC ring (89us) with 50ps resolution using SR light

A very large dynamic range should make it possible to see ghost bunches as small as 5e5 protons / 50ps with long integration

Streak Camera

人 1

'Streak cameras uses a time dependent deflecting electric field to convert time information in spatial information on a CCD'

Mitsuru Uesaka et al, NIMA 406 (1998) 371

200fs time resolution obtained using reflective optics and 12.5nm bandwidth optical filter (800nm) and the Hamamatsu FESCA 200

Limitations : Time resolution of the streak camera :

(i) Initial velocity distribution of photoelectrons : narrow bandwidth optical filter
(ii) Spatial spread of the slit image: small slit width
(iii) Dispersion in the optics

Streak camera examples

Observation of 5MeV electron bunch train using cherenkov Sweep speed of 250ps/mm

Measure of bunch length using OTR and OSR

Sweep speed of 10ps/mm

Bunch Length measurement with Coherent Radiation

'The shorter in time, The broader in frequency'

Bunch Form Factor for Gaussian distribution

CAS intermediate level - Trondheim-2013

Measuring Radiation Spectrum

 $S(\mathcal{W}) \gg N^2 S_p(\mathcal{W}) F(\mathcal{W})$

✓ S(ω) – radiation spectrum ((known in the experiment)
 ✓ N – number of electrons on the bunch (known from the experiment)
 ✓ F(ω) – bunch form factor (what you want to find out)
 ✓ S_p(ω) – single particle spectrum (should be known)

<u>Coherent Transition Radiation (CTR)</u>

P. Kung et al, Physical review Letters 73 (1994) 96

<u>Coherent Diffraction (CDR) or Coherent Synchrotron (CSR)</u>

B. Feng et al, NIM A 475 (2001) 492-497 ; A.H. Lumpkin et al,A 475(2001) 470-475 ; C. Castellano et al, Physical Review E 63 (2001) 056501

T. Watanabe et al, NIM A 437 (1999) 1-11 & NIM A 480 (2002) 315-327

Bunch Frequency Spectrum by Coherent Radiation

'The **polychromator** enables to get the spectrum directly by a single shot. The radiation is deflected by a grating and resolved by a multichannels detector array'

T. Wanatabe et al., NIM-A 480 (2002) 315-327 H. Delsim-Hashemiet al., Proc. FLS, Hamburg 2006, WG512

B. Schmidt, DESY

Bunch Frequency Spectrum by Coherent Radiation

CAS intermediate level - Trondheim-2013

RF techniques

'How to transform time information into spatial information'

Bunch Shape Monitor - Feschenko monitor

- 1 Target (wire, screen, laser for H⁻) : Source of secondary electrons
- 2 Input collimator
- 3 RF deflector (100MHz, 10kV) combined with electrostatic lens
- 4 Electron Beam detector (electron multiplier, ..)

CAS intermediate level - Trondheim-2013

Bunch Shape monitor - Feschenko monitor

Longitudinal Bunch profile @ SNS

A. Feschenko et al, Proceedings of LINAC 2004, Lubeck, p408

RF Deflecting Cavity

P. Emma et al, LCLS note LCLS-TN-00-12, (2000)

RF Deflecting Cavity

CTF3

LOLA @ Flash

RF Deflecting Cavity

RF by Deflecting Cavity

RF by Deflecting Cavity

Bunch length measurement @ Flash

LOLA off:

LOLA on:

M. Hüning et al, Proceeding of the27th FEL conference, Stanford, 2005, pp538

RF accelerating structures

'The electron energy is modulated by the zero-phasing RF accelerating field and the bunch distribution is deduced from the energy dispersion measured downstream using a spectrometer line'

CAS intermediate level - Trondheim-2013

RF accelerating structures

D. X. Wang *et al*, Physical Review E57 (1998) 2283 84fs, 45MeV beam but low charge beam

Limitations

RF non linearities Beam loading and wakefield for high charge beam

Laser based techniques

Sampling Techniques

Laser Wire Scanner : Photo-neutralization

Detection system based on
The measurement of released electrons using a magnet and a collector (faraday cup, MCP,..)

• Measured the conversion of H into H with a current monitor

Laser Wire Scanner : Photo-neutralization

Mode Locked Laser Longitudinal Measurements @ SNS

2.5 MeV H⁻, 402.5 MHz bunching freq, Ti-Sapphire laser phase-locked @ 1/5th bunching frequency

S. Assadi et al, Proceedings of EPAC 2006, Edinburgh, pp 3161

Laser Wire Scanner - Compton scattering

CAS intermediate level - Trondheim-2013

Laser Wire Scanner - Compton scattering

Using a 10TW Ti:Al₂O₃ laser system. Detecting 5.10⁴ 10-40 keV X-rays using either an X-ray CCD and Ge detector.

W.P. Leemans et al, PRL 77 (1996) 4182

Non linear mixing

'Non linear mixing uses beam induced radiation, which is mixed with a short laser pulse in a doubling non linear crystal (BBO,..). The resulting up frequency converted photons are then isolated and measured'

M. Zolotorev *et al*, **Proceeding of the PAC 2003**, pp.2530 15-30ps electron bunches (ALS, LBNL) scanned by a 50fs Ti: Al_2O_3 laser

T. Lefevre

n!

CAS intermediate level - Trondheim-2013

Electro Optic Sampling

'This method is based on the polarization change of a laser beam which passes through a crystal itself polarized by the electrons electric field'

E-field induced birefringence in EO-crystal : Pockels effect

CAS intermediate level - Trondheim-2013

Electro Optic Sampling

Using 12fs Ti:Al2O3 laser at 800nm and ZnTe crystal 0.5mm thick and a beam of 46MeV, 200pC, 2ps.

X. Yan et al, PRL 85, 3404 (2000)

Electro Optic based bunch length monitors

- 1. Sampling:
- multi-shot method
- arbitrary time window possible
- 2. Chirp laser method, spectral encoding
- laser bandwidth limited~ 250fs
- Wilke et.al., PRL 88 (2002) 124801

3. Spatial encoding:

imaging limitation ~ 30-50 fs
Cavalieri *et. al*, PRL 94 (2005) 114801
Jamison *et. al*, Opt. Lett. 28 (2003) 1710
Van Tilborg *et. al*, Opt. Lett. 32 (2007) 313

4. Temporal decoding:

laser pulse length limited ~ 30fs
 Berden *et.al*, PRL 93 (2004) 114802

Electro Optic Temporal decoding

Encoding Time resolution

•Thin crystal (>10μm)

•Consider new materials GaSe, DAST, MBANP or poled organic polymers?

W.A. Gillespie & S. Jamison

T. Lefevre

"Beam Instrumentation for Linear Collider" - 2nd Ditanet School on Beam diagnostic - Stockholm–2011

Encoding Time resolution

Spectral limitations of the Crystal

W.A. Gillespie & S. Jamison

T. Lefevre

"Beam Instrumentation for Linear Collider" - 2nd Ditanet School on Beam diagnostic - Stockholm-2011

Summary

Optical radiation		$\land \sigma$	1 n!	Limitations
 Cherenkov / OTR radiation 	X	1 1 1		
 ODR / OSR Radiation 	X		1 1 1 1 1 1	
 Streak camera 		X		200fs
Coherent radiation : Bunch spectrum				
 Interferometry 		X	X	
 Polychromator 		X	X	
Rr techniques			~	
• Feschenko monitor				Hadron, 20ps
• RF Deflector	X	X	X	10†5
 Zero phasing techniques 	X	X	X	10†s
Laser based Method				
 Sampling 			×	Jitter (50fs)
 Non linear mixing 		X		
 Thomson/Compton scattering 	X	X		Electron
 Photo-neutralization 	X	X		H-
 Electro-Optic Sampling 	X	X		
 E-O Spectral decoding 	X	X	X	~ 200fs
 E-O Spatial decoding 	X	X	X	~ 50fs
 E-O Temporal decoding 	X	X	' X '	~ 50fs

٠

•

- Measurement of nm beam positions
- Measurement of um transverse beam sizes
- Measurement of fs-scale long profiles
- Beam synchronization at the fs-scale
- Keeping the beams in collision (IP feedback)

Synchronization of (distant) accelerator components down to the femtosecond

Speed of light:

 $= 3*10^{8} \text{ m/s}$ = 0.3 um/ fs

- 1) Clock stability
- 2) Distribution over length

- •diode pumped
- •sub-100 fs to ps pulse duration
- 1550 nm (telecom) wavelength for fiber-optic component availability
 repetition rate 30-100 MHz

Why fiber transmission?

- Fiber offers THz bandwidth, immunity from electromagnetic interference, immunity from ground loops and very low attenuation
- However, the phase and group delay of single-mode glass fiber depend on its environment
 - temperature dependence
 - acoustical dependence
 - dependence on mechanical motion
 - dependence on polarization effects

- These are corrected by reflecting a signal from the far end of the fiber, compare to a reference, and correct fiber phase length.
- Two approaches: CW and pulsed

4 May 2006

John Byrd, BIW2006

Stabilized fiber link

Frequency-offset Optical Interferometry

Technique used at ALMA 64 dishes over 25 km **Principle: Heterodyning preserves phase relationships**

1 degree at optical = 1 degree RF

1 degree at 110 MHz = 0.014 fsec at optical

footprint, 37 fsec requirement Gain 10⁵ leverage over RF-based systems in phase sensitivity

Thermal control of critical components

Peltier Coolers

Baseplate

Aluminum Chamber

Some components

Complete

ohn Byrd, BIW2006

Insulating Jacket

tor.

Measurement: Bunch arrival monitor (Σ)

Principle of the arrival time detection. Reference laser pulses traverse an electro-optical modulator which is driven by the signal of a beam pick-up (top). Arrival time changes of the electron beam cause different modulation voltages at the laser pulse arrival time (bottom), leading to laser amplitude changes that are detected by a photo detec-

A Sub-50 Femtosecond bunch arrival time Gostal Octo

Hamburg) DIPAC07

FLASH; F. Loehl, Kirsten E. Hacker, H. Schlarb (DESE, RN-BE-BI-QP

H.Schmickler Comparison of the average bunch arrival time over the bunch train at the end of the machine with the average beam energy after the first accelerating module ACC1.

- Measurement of nm beam positions
- Measurement of um transverse beam sizes
- Measurement of fs-scale long profiles
- Beam synchronization at the fs-scale
- Keeping the beams in collision (IP feedback)

Beam Control Stability Issues

- Degradation of the luminosity due to IP beam jitter
- Sources of IP beam jitter: ground motion, additional local noise (e.g. cooling water)
- IP jitter control:

"Cold-RF" based LC (e.g. ILC)

- A fast intra-train FB systems at the IP can in principle recover
 90% of the nominal luminosity
- The linac+BDS elements jitter tolerance and tolerable ground motion are not determined from IP jitter, but from diagnostic performance and emittance preservation

"Warm-RF" based LC (e.g. CLIC)

- IP beam stability mainly provided from:
 - Selection of a site with sufficiently small ground motion
 - Pulse-to-pulse FB systems for orbit correction in linac and BDS
 - Active stabilisation of the FD quadrupoles
- In this case a fast intra-train FB system is thought as an additional line of defence to recover at least ~ 80% of nominal luminosity in case of failure of the above stabilisation subsystems.
- A fast FB system can also help to relax the FD subnanometer position jitter tolerance

IP-FB Systems

ILC (500 GeV)

Beam time structure:

- Train repetition rate: 5 Hz
- Bunch separation: 369.2 ns
- Train length: 969.15 μs
- Intra-train (allows bunch-tobunch correction)
- Digital FB processor (allows FPGA programming)
- Large capture range (10s of σ)
- IP position intra-train FB system + Angle intra-train FB system (in the FFS)

CLIC (3 TeV)

- Beam time structure:
 - Train repetition rate: 50 Hz
 - Bunch separation: 0.5 ns
 - Train length: 0.156 μs
- Intra-train (but not bunch-tobunch)
- Analogue FB processor
- No angle intra-train FB system due to latency constraints

Beam-beam deflection curve

The analysis of the beam deflection angle caused by one beam on the other is a method to infer the relative beam-beam position offset at the IP

The convergence range is limited by the non-linear response of beam-beam deflection

Bunch train structure comparison

	Cold LC	Warm LC	
Property	ILC 500 GeV	CLIC 3 TeV	units
Electrons/bunch	2.0	0.37	10^{10}
Bunches/train	2625	312	
Train Repetition Rate	5	50	Hz
Bunch Separation	369.2	0.5	ns
Train Length	969.15	0.156	μs
Horizontal IP Beam Size (σ_x)	639	45	nm
Vertical IP Beam Size (σ_y)	5.7	0.9	nm
Longitudinal IP Beam Size	300	45	μ m
Luminosity	2.03	6.0	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$

For CLIC 738 times smaller bunch separation and 6212 times smaller bunch train length than for ILC !

IP intra-pulse FB is more challenging.

Analogue FB system Basic scheme

Equipment:

- BPM: to register the orbit of the out-coming beam
- BPM processor: to translate the raw BPM signals into a normalised position output
- Kicker driver amplifier: to provide the required output drive signals
- Fast kicker: to give the required correction to the opposite beam

CLIC IP-FB system latency issues

- Irreducible latency:
 - Time-of-flight from IP to BPM: t_{pf}
 - Time-of-flight from kicker to IP: t_{kf}
- Reducible latency:
 - BPM signal processing: *t_p*
 - Response time of the kicker: t_k
 - Transport time of the signal BPM-kicker: t_s

Study and test of an analogue FB system for 'warm' linear colliders: FONT3:

P. Burrows et al. "PERFORMANCE OF THE FONT3 FAST ANALOGUE INTRA-TRAIN BEAM-BASED FEEDBACK SYSTEM AT ATF", Proc. of PAC05.

Comparison of tentative latency times for a possible CLIC IP-FB system with the latency times of FONT3

Source of delay	Latency FONT3 [ns]	Latency CLIC [ns]
$t_{pf} + t_{kf}$	4	20
t_s	6	7
t_p	5	5
t_k	5	5
Total <i>t</i> _{FB}	20	37

CLIC IR IP-FB BPM and kicker positions

The choice of the position of the IP-FB elements is a compromise between:

- Reduction of latency
- Avoiding possible degradation of the BPM response due to particle background/backsplash and possible damage of electronics components

If FONT elements 3 m apart from IP, then beam time-of-flight = 10 ns

Luminosity performance

Simulation time structure: Simulation applying a single random seed of GM C

•For the simulations we have considered a correction iteration every 30 ns. The systems performs approximately a correction every 60 bunches (5 iterations per train)