Problems A1-1: Lattice Design

1) A transport lattice with no acceleration consists of FODO cells with quadrupole spacing $L=10 \mathrm{~m}$ and focal distance $f=10 \mathrm{~m}$. How large is the phase advance?
2) Estimate the RMS beam jitter at a position with $\beta\left(s_{2}\right)=1 \mathrm{~m}$ if one quadrupole jitters 450° upstream with a focal length $f=7 \mathrm{~m}$ and $\beta\left(s_{1}\right)=10 \mathrm{~m}$. The quadrupole jitter amplitude has an RMS of $1 \mu \mathrm{~m}$.
3) Calculate the average beta-function in a thin lens FODO lattice as a function of $\hat{\beta}, \check{\beta}$ and L / f

Solutions

1) We use

$$
\begin{gathered}
\cos \mu=1-\frac{L^{2}}{2 f^{2}} \\
\Rightarrow \cos \mu=1-\frac{1}{2} \\
\Rightarrow \mu=\arccos \left(\frac{1}{2}\right)=60^{\circ}
\end{gathered}
$$

2) The angular deflection is given by the offset δ and the focal strength f

$$
y^{\prime}=\frac{\delta}{f}
$$

we transform into nromalised phase space

$$
y_{N}^{\prime}=\sqrt{\beta\left(s_{1}\right)} \frac{\delta}{f}
$$

450° downstream this is

$$
y_{N}=\sqrt{\beta\left(s_{1}\right)} \frac{\delta}{f}
$$

which translates into

$$
y=\sqrt{\beta\left(s_{1}\right) \beta\left(s_{2}\right)} \frac{\delta}{f}
$$

inserting number we find

$$
y \approx 0.45 \delta
$$

hence the RMS jitter $\sigma_{y, j i t t}=0.45 \mu \mathrm{~m}$.
D. Schulte, 7th Linear Collider School 2012, Main Linac Basics 1

Solutions

3) We will integrate from the centre of a defocusing quadrupole (at $s=0$) to the centre of the next focusing quadrupole (at $s=L$). In the centre of the defocusing quadrupole we have $\beta=\check{\beta}$ and $\alpha=0$. We calculate the Twiss parameters immediately after the quadrupole (at $\epsilon \rightarrow 0$):

$$
\begin{gathered}
\left(\begin{array}{cc}
\beta(\epsilon) & -\alpha(\epsilon) \\
-\alpha(\epsilon) & \gamma(\epsilon)
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
1 /(2 f) & 1
\end{array}\right)\left(\begin{array}{cc}
\check{\beta} & 0 \\
0 & 1 / \check{\beta}
\end{array}\right)\left(\begin{array}{cc}
1 & 1 /(2 f) \\
0 & 1
\end{array}\right) \\
\Rightarrow\left(\begin{array}{cc}
\beta(\epsilon) & -\alpha(\epsilon) \\
-\alpha(\epsilon) & \gamma(\epsilon)
\end{array}\right)=\left(\begin{array}{cc}
\check{\beta} & \check{\beta} /(2 f) \\
\check{\beta} /(2 f) & 1 / \check{\beta}+\check{\beta} /(2 f)^{2}
\end{array}\right)
\end{gathered}
$$

now we calculate beta along a drift using

$$
\begin{gathered}
\left(\begin{array}{cc}
\beta(s) & -\alpha(s) \\
-\alpha(s) & \gamma(s)
\end{array}\right)=\left(\begin{array}{ll}
1 & s \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\check{\beta} & \check{\beta} /(2 f) \\
\check{\beta} /(2 f) & 1 / \check{\beta}+\check{\beta} /(2 f)^{2}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
s & 1
\end{array}\right) \\
\beta(s)=\check{\beta}+\frac{\check{\beta}}{f} s+\left(\begin{array}{c}
1 \\
\check{\beta}
\end{array}+\frac{\check{\beta}}{4 f^{2}}\right) s^{2} \\
\langle\beta\rangle=\frac{1}{L} \int_{0}^{L} \beta(s) d s=\check{\beta}+\frac{\check{\beta}}{2 f} L+\frac{L^{2}}{3}\left(\frac{1}{\check{\beta}}+\frac{\check{\beta}}{4 f^{2}}\right)
\end{gathered}
$$

to avoid to much calculation we exploit

$$
\beta(L)=\hat{\beta}=\check{\beta}+\frac{\check{\beta}}{f} L+\left(\frac{1}{\check{\beta}}+\frac{\check{\beta}}{4 f^{2}}\right) L^{2}
$$

hence

$$
\langle\beta\rangle=\frac{2}{3} \check{\beta}+\frac{1}{3} \hat{\beta}+\frac{L}{6 f} \check{\beta}
$$

D. Schulte, 7th Linear Collider School 2012, Main Linac Basics 2

