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● What do we mean by beam instrumentation? 
● The “eyes” of the machine operators  

● i.e. the instruments that observe beam behaviour 

● An accelerator can never be better than the instruments measuring its performance! 

● What does work in beam instrumentation entail? 
● Design, construction & operation of instruments to observe particle beams 

● R&D to find new or improve existing techniques to fulfill new requirements 

● A combination of the following disciplines 
● Applied & Accelerator Physics; Mechanical, Electronic & Software Engineering 

● A fascinating field of work! 

● What beam parameters do we measure? 
● Beam Position 

● Horizontal and vertical throughout the accelerator 

● Beam Intensity (& lifetime measurement for a storage ring/collider) 
● Bunch-by-bunch charge and total circulating current 

● Beam Loss 
● Especially important for superconducting machines 

● Beam profiles 
● Transverse and longitudinal distribution 

● Collision rate / Luminosity (for colliders) 
● Measure of how well the beams are overlapped at the collision point   

 

Introduction 
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More  Measurements 

● Machine Chromaticity 

● Machine Tune 
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QF 
QF QF 

QD QD 

SF 
SF 

SF 
SD SD 

Spread in the Machine 

Tune due to Particle 

Energy Spread 
Controlled by Sextupole 

magnets 

Characteristic Frequency 

of the Magnet Lattice 
Given by the strength of the 

Quadrupole magnets 

Optics Analogy: 

Achromatic incident light 

[Spread in particle energy] 

Lens 

[Quadrupole] 

Focal length is 

energy dependent 
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The Typical Instruments 
● Beam Position 

● electrostatic or electromagnetic pick-ups and related electronics 

● Beam Intensity 
● beam current transformers 

● Beam Profile 
● secondary emission grids and screens 

● wire scanners 

● synchrotron light monitors 

● ionisation and luminescence monitors 

● femtosecond diagnostics for ultra short bunches 

● Beam Loss 
● ionisation chambers or pin diodes 

● Machine Tune and Chromaticity 
● In second part 

● Luminosity Monitoring 
● in second part   



Measuring Beam Position – The Principle 
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Wall Current Monitor – The Principle 
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Ceramic Insert 
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Wall Current Monitor – Beam Response 
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Electrostatic Monitor – The Principle 
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Electrostatic Monitor – Beam Response 
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Electrostatic Pick-up – Button 

  Low cost  most popular 

× Non-linear 
• requires correction algorithm 

 when beam is off-centre 

For Button with Capacitance Ce & 
Characteristic Impedance R0 

 

Transfer Impedance: 

 

 

 

Lower Corner Frequency: 
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A Real Example – The LHC Button 



● Standard BPMs give intensity signals which need to be subtracted to obtain 
a difference which is then proportional to position 

● Difficult to do electronically without some of the intensity information leaking through 
● When looking for small differences this leakage can dominate the measurement 

● Typically 40-80dB (100 to 10000 in V) rejection  tens micron resolution for typical apertures 

● Solution – cavity BPMs allowing sub micron resolution 
● Design the detector to collect only the difference signal 

● Dipole Mode TM11 proportional to position & shifted in frequency with respect to monopole mode 

 

Improving the Precision for Next 

Generation Accelerators 
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f / GHz 

U
 /

 V
 

Frequency Domain 

TM01 

TM11 

TM02 

U~Q U~Qr U~Q Courtesy of D. Lipka, 

DESY, Hamburg 

TM01 

TM11 

TM02 



● Obtain signal using waveguides that only couple to dipole mode 
● Further suppression of monopole mode 

 

 

 

 

 

 

 

 

 

● Prototype BPM for ILC Final Focus 
● Required resolution of 2nm (yes nano!) in a 6×12mm diameter beam pipe 

● Achieved World Record (so far!) resolution of 8.7nm at ATF2 (KEK, Japan) 

Today’s State of the Art BPMs 

Monopole Mode Dipole Mode 
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Courtesy of D. Lipka, 

DESY, Hamburg 

Courtesy of D. Lipka & Y. Honda 
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● Accuracy 

●  mechanical and electromagnetic errors 

●  electronic components 

● Resolution 

● Stability over time 

● Sensitivity and Dynamic Range 

● Acquisition Time 

●  measurement time 

●  repetition time 

● Linearity 

●  aperture & intensity 

● Radiation tolerance 

 

Criteria for Electronics Choice - 

so called “Processor Electronics” 
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Processing System Families 

Legend: 
       
      / Single channel 
 
         Wide Band 
 
        Narrow band 

Normalizer 
Processor 

Active 
Circuitry 

Heterodyne POS = (A-B)  
 

Synchronous 
Detection 

AGC 
on S 

MPX 

Passive 
Normaliz. 

POS = [log(A/B)]  
  = [log(A)-log(B)] 
  

Differential 
Amplifier 

Logarithm.  
Amplifiers 

Individual 
Treatment 

Limiter, 
Dt to Ampl. 

Amplitude 
to Time 

POS = [A/B]  

POS = [ATN(A/B)]  
Amplitude 
to Phase 

. Limiter, 
f to Ampl. 

POS = D / S  Heterodyne 
Hybrid 

D / S 
Homodyne 
Detection 

Electrodes 
A, B 

Direct 
Digitisation POS = D / S  
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LINEARITY Comparison 
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BPM Acquisition Electronics 

 Amplitude to Time Normaliser 
 

Advantages 
 

● Fast normalisation (< 25ns) 
● bunch to bunch measurement 

● Signal dynamic independent of the 
number of bunches 

● Input dynamic range ~45 dB 

● No need for gain selection 

● Reduced number of channels 
● normalisation at the front-end 

● ~10 dB compression of the position 
dynamic due to the recombination 
of signals 

● Independent of external timing 

● Time encoding allows fibre optic 
transmission to be used 

 

 

Limitations 
 

● Currently reserved for beams 
with empty RF buckets between 
bunches e.g. 

● LHC 400MHz RF but 25ns 
spacing 

● 1 bunch every 10 buckets filled 

● Tight time adjustment required 

● No Intensity information 

● Propagation delay stability and 
switching time uncertainty  are 
the limiting performance factors 
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What one can do with such a System 

Used in the CERN-SPS for electron cloud & instability studies. 
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The Typical Instruments 
● Beam Position 

● electrostatic or electromagnetic pick-ups and related electronics 

● Beam Intensity 
● beam current transformers 

● Beam Profile 
● secondary emission grids and screens 

● wire scanners 

● synchrotron light monitors 

● ionisation and luminescence monitors 

● Femtosecond diagnostics for ultra short bunches 

● Beam Loss 
● ionisation chambers or pin diodes 

● Machine Tunes and Chromacitities 
● in diagnostics section of tomorrow 

● Luminosity 
● in diagnostics section of tomorrow  
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Current Transformers 

Beam current 

Magnetic field 

ri 

ro 

Fields are very low 

 

Capture magnetic field 

lines with cores of high 

relative permeability 

 

(CoFe based amorphous 

alloy Vitrovac: μr= 105) w 

N Turn winding 

Transformer Inductance 
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Fast Beam Current Transformer 

● 500MHz Bandwidth 

● Low droop (< 0.2%/ms) 

BEAM 

Image 

Current 

Ceramic 

Gap 

80nm Ti Coating 

20 to improve 

impedance 

1:40 Passive 

Transformer 

Calibration winding 
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Acquisition Electronics 

FBCT Signal after 200m of Cable 

Integrator Output 

Data taken on LHC type beams at the CERN-SPS 

25ns 
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What one can do with such a System 
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The DC current transformer 

B 

I 

● AC current transformer can be extended to very low 
frequency but not to DC ( no dI/dt ! ) 

● DC current measurement is required in storage rings 

● To do this: 
●  Take advantage of non-linear magnetisation curve 

●  Apply a modulation frequency to 2 identical cores 
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DCCT Principle – Case 1: no beam 

I 

B 

Modulation Current - Core 1 

Modulation Current - Core 2 
IM 

t 

Hysteresis loop 

of modulator cores 
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DCCT Principle – Case 1: no beam 

I 

B 

dt

dB
V 

V 

t 

dB/dt - Core 1 (V1) 

dB/dt - Core 2 (V2) 

Output voltage = V1 – V2 
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DCCT Principle – Case 2: with beam 

Beam Current IB 

V 

t 

 IB 

Output signal is at twice 

the modulation frequency dB/dt - Core 1 (V1) 

dB/dt - Core 2 (V2) 

Output voltage = V1 – V2 

I 

B 
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Zero Flux DCCT Schematic 

Beam 

Compensation current Ifeedback = - Ibeam 

Modulator 

V = R  Ibeam 

Power supply 

R 

Synchronous 

detector 

Va - Vb 

Vb 

Va 
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The Typical Instruments 
● Beam Position 

● electrostatic or electromagnetic pick-ups and related electronics 

● Beam Intensity 
● beam current transformers 

● Beam Profile 
● secondary emission grids and screens 

● wire scanners 

● synchrotron light monitors 

● ionisation and luminescence monitors 

● femtosecond diagnostics for ultra short bunches 

● Beam Loss 
● ionisation chambers or pin diodes 

● Machine Tunes and Chromacitities 
● in diagnostics section of tomorrow 

● Luminosity 
● in diagnostics section of tomorrow  
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Secondary Emission (SEM) Grids 

● When the beam passes 
through secondary electrons 
are ejected from the wires 

 

● The liberated electrons are 
removed using a polarisation 
voltage 

 

● The current flowing back onto 
the wires is measured 

 

● One amplifier/ADC chain is 
used for each wire 
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Profiles from SEM grids 

● Charge density 
measured from each 
wire gives a projection of 
the beam profile in either 
horizontal or vertical 
plane 

 

● Resolution is given by 
distance between wires 

 

● Used only in low energy 
linacs and transfer lines 
as heating is too great 
for circulating beams 
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Wire Scanners 
● A thin wire is moved across the beam 

● has to move fast to avoid excessive heating of the wire 

● Detection 
● Secondary particle shower detected outside the vacuum chamber using a 

scintillator/photo-multiplier assembly 

● Secondary emission current detected as for SEM grids  

● Correlating wire position with detected signal gives the beam profile 
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OTR Screen 

Mirror 

Intensifier - 

CCD 

Beam 

Beam Profile Monitoring using Screens 

Lens 

Exit window 

● Optical Transition Radiation 
● Radiation emitted when a charged particle beam goes through the 

interface of 2 media with different dielectric constants 

● surface phenomenon allows the use of very thin screens (~10mm) 
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Beam Profile Monitoring using Screens 

● Screen Types 

●  Luminescence Screens 

● destructive (thick) but work during setting-up with low intensities 

●  Optical Transition Radiation (OTR) screens 

● much less destructive (thin) but require higher intensity 
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Beam Profile Monitoring using Screens 

● Usual configuration 

● Combine several screens in one 
housing e.g. 

●Al2O3 luminescent screen for setting-up 
with low intensity 

●Thin (~10um) Ti OTR screen for high 
intensity measurements 

●Carbon OTR screen for very high 
intensity operation 

● Advantages compared to SEM grids 
●  allows analogue camera or CCD acquisition 

●  gives two dimensional information 

●  high resolution: ~ 400 x 300 = 120’000 pixels for a standard CCD 

●  more economical 

● Simpler mechanics & readout electronics 

● Time resolution depends on choice of image capture device 

● From CCD in video mode at 50Hz to Streak camera in the GHz range 
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Luminescence Profile Monitor 
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Luminescence Profile Monitor 

CERN-SPS Measurements 

● Profile Collected every 20ms 

● Local Pressure at ~510-7 Torr 
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The Synchrotron Light Monitor 
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The Synchrotron Light Monitor 
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● Next Generation FELs & 
Linear Colliders 
● Use ultra short bunches to 

increase brightness or 
improve luminosity 

● How do we measure such 
short bunches? 
● Transverse deflecting cavity 

 

Measuring Ultra Short Bunches 
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Electro-Optic Sampling – Non Destructive 

Hermann Schmickler – CERN Beam Instrumentation Group             

Spectral Decoding 

Temporal decoding 

Limited to >250fs by laser bandwidth 

Limited to >30fs by sampling laser pulse 
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The Typical Instruments 
● Beam Position 

● electrostatic or electromagnetic pick-ups and related electronics 

● Beam Intensity 
● beam current transformers 

● Beam Profile 
● secondary emission grids and screens 

● wire scanners 

● synchrotron light monitors 

● ionisation and luminescence monitors 

● femtosecond diagnostics for ultra short bunches 

● Beam Loss 
● ionisation chambers or pin diodes 

● Machine Tunes and Chromacitities 
● in diagnostics section of tomorrow 

● Luminosity 
● in diagnostics section of tomorrow  
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Beam Loss Detectors 

● Role of a BLM system: 

1. Protect the machine from damage 

2. Dump the beam to avoid magnet quenches (for SC magnets) 

3. Diagnostic tool to improve the performance of the accelerator 
 

● Common types of monitor 
● Long ionisation chamber (charge detection) 

● Up to several km of gas filled hollow coaxial cables 

● Position sensitivity achieved by comparing direct & reflected pulse 

● e.g. SLAC – 8m position resolution (30ns) over 3.5km cable length 

● Dynamic range of up to 104 



Hermann Schmickler – CERN Beam Instrumentation Group             

● Common types of monitor (cont) 

● Short ionisation chamber (charge detection) 

● Typically gas filled with many metallic electrodes and kV bias 

● Speed limited by ion collection time - tens of microseconds 

● Dynamic range of up to 108 
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● Common types of monitor (cont) 

● PIN photodiode (count detection) 

● Detect MIP crossing photodiodes 

● Count rate proportional to beam loss 

● Speed limited by integration time 

● Dynamic range of up to 109 

Beam Loss Detectors 
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BLM Threshold Level Estimation 


