

Introduction to Beam Instrumentation

Linear Collider school 2013, Antalya

Hermann Schmickler – CERN Beam Instrumentation Group

Introduction

- What do we mean by beam instrumentation?
 - The "eyes" of the machine operators
 - i.e. the instruments that observe beam behaviour
 - An accelerator can never be better than the instruments measuring its performance!
- What does work in beam instrumentation entail?
 - Design, construction & operation of instruments to observe particle beams
 - R&D to find new or improve existing techniques to fulfill new requirements
 - A combination of the following disciplines
 - Applied & Accelerator Physics; Mechanical, Electronic & Software Engineering
 - A fascinating field of work!

What beam parameters do we measure?

- Beam Position
 - Horizontal and vertical throughout the accelerator
- Beam Intensity (& lifetime measurement for a storage ring/collider)
 - Bunch-by-bunch charge and total circulating current
- Beam Loss
 - Especially important for superconducting machines
- Beam profiles
 - Transverse and longitudinal distribution
- Collision rate / Luminosity (for colliders)
 - Measure of how well the beams are overlapped at the collision point

More Measurements

• Machine Tune

Characteristic Frequency of the Magnet Lattice Given by the strength of the Quadrupole magnets

Machine Chromaticity

The Typical Instruments

- Beam Position
 - electrostatic or electromagnetic pick-ups and related electronics
- Beam Intensity
 - beam current transformers
- Beam Profile
 - secondary emission grids and screens
 - wire scanners
 - synchrotron light monitors
 - ionisation and luminescence monitors
 - femtosecond diagnostics for ultra short bunches
 - Beam Loss
 - ionisation chambers or pin diodes
- Machine Tune and Chromaticity
 - In second part
- Luminosity Monitoring
 - in second part

Hermann Schmickler – CERN Beam Instrumentation Group

Hermann Schmickler - CERN Beam Instrumentation Group

Wall Current Monitor – Beam Response

Hermann Schmickler – CERN Beam Instrumentation Group

Hermann Schmickler - CERN Beam Instrumentation Group

Electrostatic Monitor – Beam Response

Hermann Schmickler – CERN Beam Instrumentation Group

Electrostatic Pick-up – Button

✓ Low cost \Rightarrow most popular

× Non-linear

 requires correction algorithm when beam is off-centre

For Button with Capacitance $\rm C_{e}$ & Characteristic Impedance $\rm R_{0}$

Transfer Impedance:

$$Z_{T(f>>f_c)} = \frac{A}{(2\pi r) \times c \times C_e}$$

Lower Corner Frequency:

$$f_L = \frac{1}{2\pi R_0 C_e}$$

 $X = 2.30 \cdot 10^{-5} X_1^{5} + 3.70 \cdot 10^{-5} X_1^{3} + 1.035 X_1 + 7.53 \cdot 10^{-6} X_1^{3} Y_1^{2} + 1.53 \cdot 10^{-5} X_1 Y_1^{4}$ Hermann Schmickler – CERN Beam Instrumentation Group

A Real Example – The LHC Button

Improving the Precision for Next Generation Accelerators

- Standard BPMs give intensity signals which need to be subtracted to obtain a difference which is then proportional to position
 - Difficult to do electronically without some of the intensity information leaking through
 - When looking for small differences this leakage can dominate the measurement
 - Typically 40-80dB (100 to 10000 in V) rejection \Rightarrow tens micron resolution for typical apertures
- Solution cavity BPMs allowing sub micron resolution
 - Design the detector to collect only the difference signal
 - Dipole Mode TM₁₁ proportional to position & shifted in frequency with respect to monopole mode

CERN

Today's State of the Art BPMs

- Obtain signal using waveguides that only couple to dipole mode
 - Further suppression of monopole mode

Prototype BPM for ILC Final Focus

Required resolution of 2nm (yes nano!) in a 6×12mm diameter beam pipe
Achieved World Record (so far!) resolution of 8.7nm at ATF2 (KEK, Japan)

Hermann Schmickler – CERN Beam Instrumentation Group

Criteria for Electronics Choice so called "Processor Electronics"

- Accuracy
 - mechanical and electromagnetic errors
 - electronic components
- Resolution
- Stability over time
- Sensitivity and Dynamic Range
 - Acquisition Time
 - measurement time
 - repetition time
- Linearity
 - aperture & intensity
- Radiation tolerance

CÉRN

Processing System Families

LINEARITY Comparison

Amplitude to Time Normalisation

Amplitude to Time Normalisation

BPM Acquisition Electronics Amplitude to Time Normaliser

Advantages

- Fast normalisation (< 25ns)
 - bunch to bunch measurement
- Signal dynamic independent of the number of bunches
 - Input dynamic range ~45 dB
 - No need for gain selection
- Reduced number of channels
 - normalisation at the front-end
- ~10 dB compression of the position dynamic due to the recombination of signals
- Independent of external timing
- Time encoding allows fibre optic transmission to be used

Limitations

- Currently reserved for beams with empty RF buckets between bunches e.g.
 - LHC 400MHz RF but 25ns spacing
 - 1 bunch every 10 buckets filled
- Tight time adjustment required
- No Intensity information
- Propagation delay stability and switching time uncertainty are the limiting performance factors

What one can do with such a System

Used in the CERN-SPS for electron cloud & instability studies.

The Typical Instruments

- Beam Position
 - electrostatic or electromagnetic pick-ups and related electronics
- Beam Intensity
 - beam current transformers
- Beam Profile
 - secondary emission grids and screens
 - wire scanners
 - synchrotron light monitors
 - ionisation and luminescence monitors
 - Femtosecond diagnostics for ultra short bunches
 - Beam Loss
 - ionisation chambers or pin diodes
- Machine Tunes and Chromacitities
 - in diagnostics section of tomorrow
- Luminosity
 - in diagnostics section of tomorrow

Current Transformers

Fields are very low

Capture magnetic field lines with cores of high relative permeability

(CoFe based amorphous alloy Vitrovac: $\mu_r = 10^5$)

Beam current

 eN_{g} $eN_q\beta c$ I Beam W

Transformer Inductance

$$L = \frac{\mu_0 \ \mu_r}{2\pi} w N^2 \ln \frac{r_0}{r_i}$$

The Active AC transformer

Fast Beam Current Transformer

500MHz Bandwidth

Low droop (< 0.2%/µs)

Acquisition Electronics

Data taken on LHC type beams at the CERN-SPS

Hermann Schmickler – CERN Beam Instrumentation Group

What one can do with such a System

Bad RF Capture of a single LHC Batch in the SPS (72 bunches)

Hermann Schmickler – CERN Beam Instrumentation Group

The DC current transformer

- AC current transformer can be extended to very low frequency but not to DC (no dl/dt !)
- DC current measurement is required in storage rings
- To do this:
 - Take advantage of non-linear magnetisation curve
 - Apply a modulation frequency to 2 identical cores

DCCT Principle – Case 1: no beam

Hermann Schmickler - CERN Beam Instrumentation Group

Hermann Schmickler – CERN Beam Instrumentation Group

Hermann Schmickler - CERN Beam Instrumentation Group

The Typical Instruments

- Beam Position
 - electrostatic or electromagnetic pick-ups and related electronics
- Beam Intensity
 - beam current transformers
- Beam Profile
 - secondary emission grids and screens
 - wire scanners
 - synchrotron light monitors
 - ionisation and luminescence monitors
 - femtosecond diagnostics for ultra short bunches
 - Beam Loss
 - ionisation chambers or pin diodes
- Machine Tunes and Chromacitities
 - in diagnostics section of tomorrow
- Luminosity
 - in diagnostics section of tomorrow

Secondary Emission (SEM) Grids

- When the beam passes through secondary electrons are ejected from the wires
- The liberated electrons are removed using a polarisation voltage
- The current flowing back onto the wires is measured
- One amplifier/ADC chain is used for each wire

Profiles from SEM grids

- Charge density measured from each wire gives a projection of the beam profile in either horizontal or vertical plane
- Resolution is given by distance between wires
- Used only in low energy linacs and transfer lines as heating is too great for circulating beams

Wire Scanners

- A thin wire is moved across the beam
 - has to move fast to avoid excessive heating of the wire
- Detection
 - Secondary particle shower detected outside the vacuum chamber using a scintillator/photo-multiplier assembly
 - Secondary emission current detected as for SEM grids
- Correlating wire position with detected signal gives the beam profile

Beam Profile Monitoring using Screens

Optical Transition Radiation

- Radiation emitted when a charged particle beam goes through the interface of 2 media with different dielectric constants
- surface phenomenon allows the use of very thin screens (~10 μ m)

Beam Profile Monitoring using Screens

- Screen Types
 - Luminescence Screens
 - destructive (thick) but work during setting-up with low intensities
 - Optical Transition Radiation (OTR) screens
 - much less destructive (thin) but require higher intensity

Sensitivities measured with protons with previous screen holder,

Туре	Material	Activator	Sensitivity	
Luminesc.	CsI	T1	6 10 ⁵	
"	Al_2O_3	0.5%Cr	3 107	
"	Glass	Ce	3 109	
"	Quartz	none	6 10 ⁹	1
OTR [bwd]	Al		2 1010	
"	Ti		2 1011	
**	С		2 1012	
				-
Luminesc. GSI	P43: Gd ₂ O ₂ S	Tb	2 107	

normalised for 7 px/ σ

Beam Profile Monitoring using Screens

Usual configuration

- Combine several screens in one housing e.g.
 - Al₂O₃ luminescent screen for setting-up with low intensity
 - Thin (~10um) Ti OTR screen for high intensity measurements
 - Carbon OTR screen for very high intensity operation

Advantages compared to SEM grids

- allows analogue camera or CCD acquisition
- gives two dimensional information
- high resolution: ~ 400 x 300 = 120'000 pixels for a standard CCD
- more economical
 - Simpler mechanics & readout electronics
- Time resolution depends on choice of image capture device
 - From CCD in video mode at 50Hz to Streak camera in the GHz range

Luminescence Profile Monitor

Hermann Schmickler – CERN Beam Instrumentation Group

Luminescence Profile Monitor

CERN-SPS Measurements

- Profile Collected every 20ms
- Local Pressure at ~5×10⁻⁷ Torr

The Synchrotron Light Monitor

The Synchrotron Light Monitor

 $\sigma_{\rm h} = 0.68 {\rm mm}$

 $\sigma_v = 0.56$ mm

 $\sigma_{\rm h} = 0.70 {\rm mm}$

 $\sigma_v = 1.05$ mm

Measuring Ultra Short Bunches

- Next Generation FELs & Linear Colliders
 - Use ultra short bunches to increase brightness or improve luminosity
- How do we measure such short bunches?
 - Transverse deflecting cavity

p⁺ @ LHC	250ps	
H ⁻ @ SNS	100ps	
e ⁻ @ ILC	500fs	
e ⁻ @ CLIC	130fs	
e ⁻ @ XFEL	80fs	
e ⁻ @ LCLS	75fs	

Electro-Optic Sampling – Non Destructive

The Typical Instruments

- Beam Position
 - electrostatic or electromagnetic pick-ups and related electronics
- Beam Intensity
 - beam current transformers
- Beam Profile
 - secondary emission grids and screens
 - wire scanners
 - synchrotron light monitors
 - ionisation and luminescence monitors
 - femtosecond diagnostics for ultra short bunches
- Beam Loss
 - ionisation chambers or pin diodes
- Machine Tunes and Chromacitities
 - in diagnostics section of tomorrow
- Luminosity
 - in diagnostics section of tomorrow

Beam Loss Detectors

- Role of a BLM system:
 - 1. Protect the machine from damage
 - 2. Dump the beam to avoid magnet quenches (for SC magnets)
 - 3. Diagnostic tool to improve the performance of the accelerator
- Common types of monitor
 - Long ionisation chamber (charge detection)
 - Up to several km of gas filled hollow coaxial cables
 - Position sensitivity achieved by comparing direct & reflected pulse
 - e.g. SLAC 8m position resolution (30ns) over 3.5km cable length
 - Dynamic range of up to 10⁴

Beam Loss Detectors

- Common types of monitor (cont)
 - Short ionisation chamber (charge detection)
 - Typically gas filled with many metallic electrodes and kV bias
 - Speed limited by ion collection time tens of microseconds
 - Dynamic range of up to 10⁸

LHC

Beam Loss Detectors

- Common types of monitor (cont)
 - PIN photodiode (count detection)
 - Detect MIP crossing photodiodes
 - Count rate proportional to beam loss
 - Speed limited by integration time
 - Dynamic range of up to 10⁹

BLM Threshold Level Estimation

