Static Imperfections and Beam-Based Correction

D. Schulte

Linear Collider School, December 2013

Low Emittance Transport Challenges

- Main linac is one of the most important sources of emittance growth
- Static imperfections
errors of reference line, elements to reference line, elements. . .
excellent pre-alignment, lattice design, beam-based alignment, beam-based tuning
- Dynamic imperfections
element jitter, RF jitter, ground motion, beam jitter, electronic noise,...
lattice design, BNS damping, component stabilisation, feedback, re-tuning, re-alignment
- Combination of dynamic and static imperfections can be severe
- Lattice design needs to balance dynamic and static effects

Emittance Budget

- CLIC
- the initial emittance has to stay below $\epsilon_{x}=600 \mathrm{~nm}$ and $\epsilon_{y}=10 \mathrm{~nm}$
- for static imperfections an emittance budget of $\Delta \epsilon_{x}=30 \mathrm{~nm}$ and $\Delta \epsilon_{y}=5 \mathrm{~nm}$ exists, which 90% of the machines have to meet
- for dynamic imperfections an emittance budget of $\Delta \epsilon_{x}=30 \mathrm{~nm}$ and $\Delta \epsilon_{y}=5 \mathrm{~nm}$ exists
- ILC
- the initial emittances have to stay below $\epsilon_{x}=8400 \mathrm{~nm}$ and $\epsilon_{y}=24 \mathrm{~nm}$
- the final emittances have to stay below $\epsilon_{x}=9400 \mathrm{~nm}$ and $\epsilon_{y}=34 \mathrm{~nm}$
- We will limit our discussion to the vertical plane

Imperfections

- Pre-Alignment imperfections can be roughly categorised into short-distance and longdistance errors
- To first order, the imperfections can be treated as independent
- as long as a linear main linac model is sufficient
- The short-distance misalignments give largest emittance contribution
- misalignment of elements is largely independent
- simulated by scattering elements around a straight line
- or slightly more complex local model
- The long-distance misalignments are dominated by reference line system, e.g. the wire or laser tracking system
\Rightarrow ignore short-distance misalignments and simulate wire errors only
- Combined studies are mainly for completeness

Example: Residual Alignment Errors due to Pre-Alignment System

D. Schulte, 8th Linear Collider School 2013, Main Linac A1-2 4

Wire System for CLIC

- Reference method for CLIC
- has been used in the LHC insertions
- A system of overlapping wires that form straight lines
- Alternative is optical measurements

D. Schulte, 8th Linear Collider School 2013, Main Linac A1-2 5

D. Schulte, 8th Linear Collider School 2013, Main Linac A1-2 6

D. Schulte, 8th Linear Collider School 2013, Main Linac A1-2 7

imperfection	with respect to	symbol	target value
BPM offset	wire reference	$\sigma_{B P M}$	$14 \mu \mathrm{~m}$
BPM resolution		$\sigma_{\text {res }}$	$0.1 \mu \mathrm{~m}$
accelerating structure offset	girder axis	σ_{4}	$10 \mu \mathrm{~m}$
accelerating structure tilt	girder axis	σ_{t}	200μ radian
articulation point offset	wire reference	σ_{5}	$12 \mu \mathrm{~m}$
girder end point	articulation point	σ_{6}	$5 \mu \mathrm{~m}$
wake monitor	structure centre	σ_{7}	$5 \mu \mathrm{~m}$
quadrupole roll	longitudinal axis	σ_{r}	100μ radian

D. Schulte, 8th Linear Collider School 2013, Main Linac A1-2 8

Assumed Survey Performance

Element	error	with respect to	alignment	
			ILC	CLIC
Structure	offset	girder	$300 \mu \mathrm{~m}$	$10 \mu \mathrm{~m}$
Structure	tilts	girder	300μ radian	$200(*) \mu \mathrm{m}$
Girder	offset	survey line	$200 \mu \mathrm{~m}$	$9.4 \mu \mathrm{~m}$
Girder	tilt	survey line	20μ radian	9.4μ radian
Quadrupole	offset	girder/survey line	$300 \mu \mathrm{~m}$	$17 \mu \mathrm{~m}$
Quadrupole	roll	survey line	300μ radian	$\leq 100 \mu$ radian
BPM	offset	girder/survey line	$300 \mu \mathrm{~m}$	$14 \mu \mathrm{~m}$
BPM	resolution	BPM center	$\approx 1 \mu \mathrm{~m}$	$0.1 \mu \mathrm{~m}$
Wakefield mon.	offset	wake center	-	$5 \mu \mathrm{~m}$

- In ILC specifications have much larger values than in CLIC
- more difficult alignment in super-conducting environment
- dedicated effort for CLIC needed
- Wakefield monitors are currently only foreseen in CLIC
- but could be an option also in ILC

Impact on the Beam

Misalignment and Wakefields

- We use a two particle model to determine the trajectory change of the second particle for a structure with length L with an offset δ and wakefield $W_{\perp}(z)$
- particles have same energy for simplicity
- charge of driving particle is $N e$, second particle is a distance z behind
- The kick of one structure is

$$
\Delta y^{\prime}=\frac{W_{\perp}(z) N e^{2} L}{E} \delta
$$

- We calculate the kick in normalised phase space

$$
\Delta y_{N}^{\prime}=\sqrt{\beta \gamma} \frac{W_{\perp}(z) N e^{2} L}{E} \delta
$$

- Summing over many elements gives the final normalised positions

$$
\begin{aligned}
& y_{N}=\sum_{i} \sin \left(\phi_{f}-\phi_{i}\right) \sqrt{\frac{\beta_{i}}{\gamma_{i}}} \frac{W_{\perp}(z) N e^{2} L_{i}}{m c^{2}} \delta_{i} \\
& y_{N}^{\prime}=\sum_{i} \cos \left(\phi_{f}-\phi_{i}\right) \sqrt{\frac{\beta_{i}}{\gamma_{i}} \frac{W_{\perp}(z) N e^{2} L_{i}}{m c^{2}} \delta_{i}}
\end{aligned}
$$

Misalignment and Wakefields II

- Using

$$
\begin{aligned}
& y_{N}=\sum_{i} \sin \left(\phi_{f}-\phi_{i}\right) \sqrt{\frac{\beta_{i}}{\gamma_{i}} \frac{W_{\perp}(z) N e^{2} L_{i}}{m c 2} \delta_{i}} \\
& y_{N}^{\prime}=\sum_{i} \cos \left(\phi_{f}-\phi_{i}\right) \sqrt{\frac{\beta_{i}}{\gamma_{i}} \frac{W_{\perp}(z) N e^{2} L_{i}}{m c^{2}} \delta_{i}}
\end{aligned}
$$

\Rightarrow we very bad case is $\delta_{i}=\delta \sin \left(\phi_{f}-\phi_{i}\right)$, e.g.

$$
\begin{gathered}
y_{N}=\sum_{i} \sin ^{2}\left(\phi_{f}-\phi_{i}\right) \sqrt{\frac{\beta_{i}}{\gamma_{i}}} \frac{W_{\perp}(z) N e^{2} L_{i}}{m c 2} \delta \\
y_{N}^{\prime}=\sum_{i} \cos \left(\phi_{f}-\phi_{i}\right) \sin \left(\phi_{f}-\phi_{i}\right) \sqrt{\frac{\beta_{i}}{\gamma_{i}}} \frac{W_{\perp}(z) N e^{2} L_{i}}{m c^{2}} \delta
\end{gathered}
$$

\Rightarrow for independent δ_{i} with RMS expectation value σ

$$
\begin{aligned}
& \left\langle\left(y_{N}\right)^{2}\right\rangle=\sum_{i} \sin ^{2}\left(\phi_{f}-\phi_{i}\right) \frac{\beta_{i}}{\gamma_{i}}\left(\frac{W_{\perp}(z) N e^{2} L_{i}}{m c^{2}}\right)^{2} \sigma^{2} \\
& \left\langle\left(y_{N}^{\prime}\right)^{2}\right\rangle=\sum_{i} \cos ^{2}\left(\phi_{f}-\phi_{i}\right) \frac{\beta_{i}}{\gamma_{i}}\left(\frac{W_{\perp}(z) N e^{2} L_{i}}{m c^{2}}\right)^{2} \sigma^{2}
\end{aligned}
$$

Emittance Growth

- The impact on the emittance is

$$
\Delta \epsilon_{y} \propto\left(\Delta y^{\prime}\right)^{2}
$$

Hence

$$
\Delta \epsilon_{y, i}=a_{i} \beta \gamma\left(\frac{W_{\perp}(z) N e^{2} L}{E} \delta\right)^{2}
$$

$$
\left\langle\Delta \epsilon_{y}\right\rangle=\sum_{i} a_{i} \frac{\beta_{i}}{\gamma_{i}}\left(\frac{W_{\perp}(z) N e^{2} L}{m c^{2}}\right)^{2} \sigma^{2}
$$

- The emittance growth per energy gain/unit length is

$$
\Delta \epsilon_{y} \propto \frac{\beta}{\gamma}\left(\frac{W_{\perp}(z) N e^{2}}{m c^{2}} \sigma\right)^{2} L
$$

Reminder: Kick and Emittance Growth

$$
\begin{gathered}
y_{\text {new }}^{\prime 2}=\frac{1}{2}\left(\left(-y^{\prime}+\delta\right)^{2}+\left(y^{\prime}+\delta\right)^{2}\right) \\
\rightarrow y_{\text {new }}^{\prime 2}=\frac{1}{2}\left(\left(y^{\prime 2}-2 y^{\prime} \delta+\delta^{2}\right)+\left(y^{\prime 2}+2 y^{\prime} \delta+\delta^{2}\right)\right) \\
\rightarrow y_{\text {new }}^{\prime 2}=y^{\prime 2}+\delta^{2}
\end{gathered}
$$

Calulating the emittance (no correlation)

$$
\epsilon=\sqrt{<y^{2}><y^{\prime 2}>}
$$

we find

$$
\begin{aligned}
& \epsilon_{\text {new }}=\sqrt{\sigma_{y}^{2}\left(\sigma_{y^{\prime}}^{2}+\delta^{2}\right)} \\
& \frac{\epsilon_{\text {new }}}{\epsilon_{\text {old }}}=\sqrt{\frac{\sigma_{y}^{2}\left(\sigma_{y^{\prime}}^{2}+\delta^{2}\right)}{\sigma_{y}^{2} \sigma_{y^{\prime}}^{2}}} \\
& \frac{\epsilon_{\text {new }}}{\epsilon_{\text {old }}}=\sqrt{\frac{\left(\sigma_{y^{\prime}}^{2}+\delta^{2}\right)}{\sigma_{y^{\prime}}^{2}}} \\
& \frac{\epsilon_{\text {new }}}{\epsilon_{\text {old }}} \approx 1+\frac{1}{2} \frac{\delta^{2}}{\sigma_{y^{\prime}}^{2}}
\end{aligned}
$$

Note: after filamentation (or if δ results from many kicks at different phases)

$$
y_{\text {new }}^{\prime 2}=y^{\prime 2}+\frac{1}{2} \delta^{2} \quad y_{\text {new }}^{2}=y^{2}+\frac{1}{2} \delta^{2}
$$

Hence

$$
\frac{\epsilon_{\text {new }}}{\epsilon_{\text {old }}}=1+\frac{1}{2} \frac{\delta^{2}}{\sigma_{y^{\prime}}^{2}}
$$

$\Delta \epsilon \propto \delta^{2}$

Misalignment and Spurious Dispersion

- We use a two particle model to determine the trajectory change of the second particle with respect to the first
- Note: In this case both particles are kicked, but since we look at the static effect we can remove the average kick
- by the way the same is true for the wakefield kick
- A particle at nominal energy is kicked by

$$
\Delta y_{0}^{\prime}=\frac{y_{q}}{f}
$$

a particle with a different energy $E=E_{\text {nom }}(1+\delta)$ is kicked as

$$
\Delta y_{1}^{\prime}=\frac{y_{q}}{f(1+\delta)}
$$

the difference is

$$
\Delta y_{1}^{\prime}-\Delta y_{0}^{\prime} \approx-\frac{y_{q}}{f} \delta
$$

Impact of Element Offset (ILC)

- Consider case with no correction

Error	with respect to	value	$\Delta \gamma \epsilon_{y}[\mathrm{~nm}]$
Cavity offset	module	$300 \mu \mathrm{~m}$	3.5
Cavity tilt	module	300μ radian	2600
BPM offset	module	$300 \mu \mathrm{~m}$	0
Quadrupole offset	module	$300 \mu \mathrm{~m}$	700000
Quadrupole roll	module	300μ radian	2.2
Module offset	perfect line	$200 \mu \mathrm{~m}$	250000
Module tilt	perfect line	20μ radian	880

\Rightarrow Need to do much better
\Rightarrow Will align with the beam

Beam-Based Tuning

Beam-Based Alignment and Tuning Strategy

- Make beam pass linac
- one-to-one correction
- Remove dispersion, align BPMs and quadrupoles
- dispersion free steering
- ballistic alignment
- kick minimisation
- Remove residual dispersive and wakefield effects
- accelerating structure alignment (CLIC only)
- emittance tuning bumps
- Tune luminosity
- tuning knobs

BPM Readings in One-To-One Correction (CLIC)

- Beam position in BPMs before and after one-toone correction shown
- after corrections no offsets remain
- Real position of beam shown in lower plot
- BPMs are misaligned

BPM Readings

- Beam position in BPMs before and after one-toone correction shown
- after corrections no offsets remain
- Real position of beam shown in lower plot
- BPMs are misaligned

Emittance Growth

- Initial emittance growth is enormous
- After one-to-one correction growth is still large

Comparison Before and After One-To-One (ILC)

- The huge impact of the quadrupoles is mitigated using one-to-one alignment
- each corrector is used to centre the beam in the next BPM downstream
\Rightarrow The problem of the quadrupoles is solved but now we have a BPM problem

Error	with respect to	value	$\Delta \gamma \epsilon_{y}[\mathrm{~nm}]$	$\Delta \gamma \epsilon_{y, 121}[\mathrm{~nm}]$
Cavity offset	module	$300 \mu \mathrm{~m}$	3.5	0.2
Cavity tilt	module	$300 \mu \mathrm{radian}$	2600	<0.1
BPM offset	module	$300 \mu \mathrm{~m}$	0	360
Quadrupole offset	module	$300 \mu \mathrm{~m}$	700000	0
Quadrupole roll	module	$300 \mu \mathrm{radian}$	2.2	2.2
Module offset	perfect line	$200 \mu \mathrm{~m}$	250000	155
Module tilt	perfect line	20μ radian	880	1.7

[^0]
Static Tolerances and Accuracies for One-To-One Correction

	error		with respect to	- tolerance		
			CLIC	ILC		
	Structure Structure Quadrupole Quadrupole BPM BPM	offset tilt offset roll offset resolution		beam beam straight line axis straight line BPM center	$5.8 \mu \mathrm{~m}$ 220μ radian - 240μ radian $0.44 \mu \mathrm{~m}$ $0.44 \mu \mathrm{~m}$	$\text { mn } \begin{gathered} \approx 700 \mu \mathrm{~m} \\ \approx 1000 \mu \text { radian } \\ - \\ 190 \mu \text { radian } \\ 15 \mu \mathrm{~m} \\ 15 \mu \mathrm{~m} \end{gathered}$
Element	error		respect to	align ILC	ment CLIC	
Structure Structure Girder Girder Quadrupole Quadrupole BPM BPM Wakefield mon.	offset tilts offset tilt offset roll offset resolution offset		girder girder survey line survey line der/survey line survey line der/survey line BPM center wake center	$300 \mu \mathrm{~m}$ 300μ radian $200 \mu \mathrm{~m}$ $20 \mu \mathrm{radian}$ $300 \mu \mathrm{~m}$ $300 \mu \mathrm{radian}$ $300 \mu \mathrm{~m}$ $\approx 1 \mu \mathrm{~m}$ $\quad-$	$10 \mu \mathrm{~m}$ $200(*) \mu \mathrm{m}$ $9.4 \mu \mathrm{~m}$ 9.4μ radian $17 \mu \mathrm{~m}$ $\leq 100 \mu \mathrm{radian}$ $14 \mu \mathrm{~m}$ $0.1 \mu \mathrm{~m}$ $5 \mu \mathrm{~m}$	

[^1]
Dispersion Free Correction

- Basic idea: use different beam energies
- NLC: switch on/off different accelerating structures
- CLIC (ILC): accelerate beams with different gradient and initial energy
- try to do this in a single pulse (time resolution)

- Optimise trajectories for different energies together:

$$
S=\sum_{i=1}^{n}\left(w_{i}\left(x_{i, 1}\right)^{2}+\sum_{j=2}^{m} w_{i, j}\left(x_{i, 1}-x_{i, j}\right)^{2}\right)+\sum_{k=1}^{l} w_{k}^{\prime}\left(c_{k}\right)^{2}
$$

- Last term is omitted
- Idea is to mimic energy differences that exist in the bunch with different beams

Simple DFS Example

- We minimise
- BPM in the centre is misaligned by y_{0}
- first corrector moves beam by $c=L \delta$ in this position
- second (-2δ) and third (δ) correctors remove oscillation

$$
\left(c-y_{0}\right)^{2}+w\left(c \frac{\Delta E}{E}\right)^{2}
$$

which yields

$$
\begin{align*}
0 & =\frac{\partial}{\partial c}\left(c-y_{0}\right)^{2}+w\left(c \frac{\Delta E}{E}\right)^{2} \tag{1}\\
c & =\frac{y_{0}}{1+w\left(\frac{\Delta E}{E}\right)^{2}} \tag{2}
\end{align*}
$$

Dispersion Free Correction BPM Readings

- In the one-to-one corrected machine an offenergy beam takes a very different trajectory
- this dispersion is visible in the BPMs and is a cause of emittance growth
- After DFS the trajectories of different energy beams are very similar
- smoother trajectory found

Dispersion Free Correction BPM Readings

- In the one-to-one corrected machine an offenergy beam takes a very different trajectory
- this dispersion is visible in the BPMs and is a cause of emittance growth
- After DFS the trajectories of different energy beams are very similar
- smoother trajectory found

Dispersion Free Correction Emittance

- The emittance growth is largely reduced by DFS
- but still too large
- Main cause of emittance growth
- trajectory is smooth but not well centred in the structures
- effective coherent structure offset
- structure initial scatter remains uncorrected

Emittance Growth (ILC)

Error	with respect to	value	$\Delta \gamma \epsilon_{y}[\mathrm{~nm}]$	$\Delta \gamma \epsilon_{y, 121}[\mathrm{~nm}]$	$\Delta \gamma \epsilon_{y, d f s}[\mathrm{~nm}]$
Cavity offset	module	$300 \mu \mathrm{~m}$	3.5	0.2	$0.2(0.2)$
Cavity tilt	module	$300 \mu \mathrm{radian}$	2600	<0.1	$1.8(8)$
BPM offset	module	$300 \mu \mathrm{~m}$	0	360	$4(2)$
Quadrupole offset	module	$300 \mu \mathrm{~m}$	700000	0	$0(0)$
Quadrupole roll	module	300μ radian	2.2	2.2	$2.2(2.2)$
Module offset	perfect line	$200 \mu \mathrm{~m}$	250000	155	$2(1.2)$
Module tilt	perfect line	20μ radian	880	1.7	-

- The results of the reference DFS method is quoted, results of a different implementation in brackets
- Note in the simulations the correction the quadrupoles had been shifted, other wise some residual effect of the quadrupole misalignment would exist

Beam-Based Structure Alignment (CLIC only)

- Each structure is equipped with a wakefield monitor (RMS position error $5 \mu \mathrm{~m}$)
- Up to eight structures on one movable girders
\Rightarrow Align structures to the beam
- Assume identical wake fields
- the mean structure to wakefield monitor offset is most important
- in upper figure monitors are perfect, mean offset structure to beam is zero after alignment
- scatter around mean does not matter a lot
- With scattered monitors
- final mean offset is $\sigma_{w m} / \sqrt{n}$
- In the current simulation each structure is moved independently
- A study has been performed to move the articulation points

- For our tolerance $\sigma_{w m}=5 \mu \mathrm{~m}$ we find $\Delta \epsilon_{y} \approx 0.5 \mathrm{~nm}$
- some dependence on alignment method

Structure Alignment

- Beam trajectory is hardly changed by structure alignment
- beam is re-steered into BPMs
- But emittance growth is strongly reduced

Final Emittance Growth (CLIC)

imperfection	with respect to	symbol	value	emitt. growth
BPM offset	wire reference	$\sigma_{B P M}$	$14 \mu \mathrm{~m}$	0.367 nm
BPM resolution		$\sigma_{\text {res }}$	$0.1 \mu \mathrm{~m}$	0.04 nm
accelerating structure offset	girder axis	σ_{4}	$10 \mu \mathrm{~m}$	0.03 nm
accelerating structure tilt	girder axis	σ_{t}	200μ radian	0.38 nm
articulation point offset	wire reference	σ_{5}	$12 \mu \mathrm{~m}$	0.1 nm
girder end point	articulation point	σ_{6}	$5 \mu \mathrm{~m}$	0.02 nm
wake monitor	structure centre	σ_{7}	$5 \mu \mathrm{~m}$	0.54 nm
quadrupole roll	longitudinal axis	σ_{r}	100μ radian	$\approx 0.12 \mathrm{~nm}$

- Selected a good DFS implementation
- trade-offs are possible
- Multi-bunch wakefield misalignments of $10 \mu \mathrm{~m}$ lead to $\Delta \epsilon_{y} \approx 0.13 \mathrm{~nm}$
- Performance of local prealignment is acceptable

Growth Along Main Linac

- Emittance growth along the main linac due to the different imperfections
- Growth is mainly constant per cell
- follows from first principles applied during lattice design
- Exception is structure tilt
- due to uncorrelated energy spread
- flexible weight to be investigated
- Some difference for BPMs

- due to secondary emittance growth

Emittance Tuning Bumps

- Emittance (or luminosity) tuning bumps can further improve performance
- globally correct wakefield by moving some structures
- similar procedure for dispersion
- Need to monitor beam size
- Optimisation procedure
- measure beam size for different bump settings
- make a fit to determine optimum setting
- apply optimum
- iterate on next bump

Tuning Bumps (ILC)

- The emittance growth after dispersion steering is still too large
\Rightarrow further improvement needed
- Possible solution are emittance tuning bumps
- measure the beam size after the main linac, i.e. with a laser wire
- modify the beam dispersion at the beginning and end of the main linac to minimise beam size

P. Eliasson et al.

Remark: Dependence on Weights (Old CLIC Parameters)

- For TRC parameters set
- One test beam is used with a different gradient and a different incoming beam energy
\Rightarrow BPM position errors are less important at large w_{1}
\Rightarrow BPM resolution is less important at small w_{1}
\Rightarrow Need to find a compromise
\Rightarrow Cannot give "the" tolerance for one error source

Ballistic Alignment

- Beam-line is divided into bins (12 quadrupoles)
- Quadrupoles in a bin are switched off
- Beam is steered into last BPM of bin
- BPMs are realigned to beam
- Quadrupoles are switched on
- Few-to-few steering is used

- Typical problems are residual fields
D. Schulte, 8th Linear Collider School 2013, Main Linac A1-2 37

Kick Minimisation

- First align BPMs to quadrupoles
- shunt quadrupole field
- observe beam motion
- move quadrupole/beam to a position that shunting does not kick beam any more
- beam now defines BPM target reading in quadrupole
- Now minimise target function

$$
S=\sum_{i=1}^{n}\left(c_{i}^{2}+w x_{i}^{2}\right)
$$

- Main problem shift of quadrupole centre with strength

Misalignment of BPM to Quadrupole due to Centre Motion

Initial deflection

$$
x_{0}^{\prime}=K x_{0}
$$

deflection for shunted quadrupole

$$
x_{1}^{\prime}=(K+\Delta K)\left(x_{0}+\delta\right)
$$

beam does not move if

$$
x_{0}^{\prime}=x_{1}^{\prime}
$$

hence

$$
\begin{gathered}
K x_{0}=(K+\Delta K)\left(x_{0}+\delta\right) \\
\Rightarrow x_{0}=-\delta \frac{K+\Delta K}{K}
\end{gathered}
$$

\Rightarrow As long as ΔK is small and $\delta \approx a \Delta K / K$

$$
x_{0} \approx-a
$$

Long Distance Alignment

- In most simulations elements are scattered around a straight line
- In reality, the relative misalignments of different elements depends on their distance
- To be able to simulate this, our simulation code can read misalignments from a file
- simulation of pre-alignment is required
- To illustrate long-wavelength misalignments, simulations have been performed
- cosine like misalignment used

Long Wavelength Tolerance I (Old CLIC)

[^2]
Long Wavelength Tolerance II (Old CLIC)

D. Schulte, 8th Linear Collider School 2013, Main Linac A1-2 42

Long Wavelength Tolerance III (Old CLIC)

[^3]
Wire System Misalignment Modelling

- Received a number of misalignments from Thomas
- Used 50 seeds for each error set
- Switched from one wire 1 to 2 at end point of 1 and back to 1 at end point of 2
- Used linear interpolation in between wire endpoints
- no sag error
- no error of geoid

Beam-Based Alignment

- Flat steering used first
- Dispersion free steering using settings from baseline algorithm
- RF structure alignment
- Different cases marked by date
\Rightarrow RF Alignment is very important

D. Schulte, 8th Linear Collider School 2013, Main Linac A1-2 45

Impact on Element Positions

Preliminary Results

\Rightarrow Significant impact of wire position sensor accuracy
\Rightarrow Small impact of number of pits
\Rightarrow The first results look very promising but more complete model being developed

Curved Main Linac (ILC)

Two main reasons why one might want to have a tunnel that follows the earth curvature

- one can stay close to the surface everywhere (but site dependent)
- in ILC, the helium level will follow the equipontential of the gravity

But there are some problems for the beam dynamics

- one needs to guide the beam on a curved orbit this requires introduction of dispersion
- the dispersion makes the machine operation more difficult

In ILC the arguments for the cryogenics where considered important, so a curved tunnel is chosen
In CLIC there was no benefit to go to a curved tunnel, so the laser-straight option is preferred.

Dispersion

- We deflect a particle of energy E_{1} with a dipole corrector (offsetting a quadrupole has exactly the same effect)
the resulting deflection angle is

$$
\delta_{1}^{\prime} \approx 0.3 \frac{\mathrm{GeV}}{\mathrm{Tm}^{2}} \frac{B L}{E_{1}}
$$

If we have a second particle at a different energy E_{2} it is deflected differently

$$
\delta_{2}^{\prime} \approx 0.3 \frac{\mathrm{GeV}}{\mathrm{Tm}^{2}} \frac{B L}{E_{2}}
$$

so the two particles will take different trajectories
The different is described by the dispersion $D_{x, y}$ with

$$
D_{x}=\frac{\partial x}{\partial \delta} \quad D_{y}=\frac{\partial y}{\partial \delta}
$$

Dispersion in ILC

- Find a periodic solution for the dispersion
\Rightarrow Projected emittance is varying but final value is good
- good example of projected emittance
- Particles with constant 1% energy difference shown
- Dispersion is 100 times larger

Initial Energy vs. Gradient

- The incoming beam has an energy spread
- Different longitudinal slices of the beam are accelerated with different gradients
\Rightarrow These path difference need not be the same

Impact of a Curved Tunnel

- If the tunnel follows the earth curvature one needs to introduce dispersion along the main linac
\Rightarrow beams of different energy will take different paths
The dispersion is measured using

$$
D \approx \frac{y_{1}-y_{2}}{E_{1}-E_{2}}
$$

the error of the measured value is given by the BPM resolution

$$
\sigma_{D}^{2} \approx \frac{2 \sigma_{r e s}^{2}}{\left(E_{1}-E_{2}\right)^{2}}
$$

If we introduce an BPM calibration error a such that the measured position $y_{\text {meas }}$ is $y_{\text {meas }}=$ $(1+a) y_{\text {real }}$ and assume σ_{a} we get

$$
\sigma_{D}^{2} \approx \frac{2 \sigma_{\text {res }}^{2}}{\left(E_{1}-E_{2}\right)^{2}}+\frac{\sigma_{a}^{2}}{E_{1}}
$$

Single Bunch Dispersion Steering Simulations

- Aim is 90% of machines at $\Delta \epsilon_{y} \leq 10 \mathrm{~nm}$
- P. Eliasson, K. Kubo,
A. Latina, P. Lebrun, F. Poirier, K. Ranjan, D. Schulte, J. Smith, N. Soljak, N. Walker...
- Not all results are benchmarked against others
- small differences in the assumptions etc.
- Consensus is:
- beam-based alignment is close to the target but not quite sufficient

- some further improvement needed with other means

[^4]Alignment of Beginning of Main Linac

- Use bunch compressor (ILC shown)

Performing the Correction

We determine the response matrix of our bin with m BPMs and n correctors First we measure the response matrix B with $b_{i, k}$ the change of beam position in BPM i due to a change of corrector k

$$
\Delta \vec{y}=B \delta \vec{c}
$$

If $m=n$ one can solve this by inversion, if $m>n$ one can use the pseudo inverse or calculate

$$
\left.\vec{c}=\left(B b B^{T}\right)\right)^{-1} B^{T} \vec{y}
$$

If we use more than one beam (DFS) we can use

$$
B=\left(\begin{array}{c}
B_{0} \\
\sqrt{w_{1}}\left(B_{1}-B_{0}\right) \\
\cdots \\
\sqrt{w_{k}}\left(B_{k}-B_{0}\right)
\end{array}\right)
$$

Other options are to use a SVD decomposition or a MICADO type algorithm

MICADO

- One employs MICADO if one wants to limit the number of correctors to be used
- The algorithm
- for each corrector calculate how much it would improve the figure of merit
- chose the most efficient one
- for each corrector calculate how much it would improve the figure of merit with the first corrector
- chose the most efficient one
- continue to add correctors until predefined number is reached
- apply the correction
- MICADO is very good if the correction steps tend to be small compared to the minimum step size

Summary

- We realised that static imperfections can have dramatic impact on the luminosity
- The most important imperfection for the main linac are the misalinement of elements in the tunnel due to the limited accuracy of the pre-aligment system
- Simple one-to-one steering can correct the impact of quadrupole misalignments
- Dispersion free steering can cure the impact of BPM misalignment
- Structure alignment with wake monitors can reduce the impact of structure misalignments
- Emittance tuning bumps can also be used

[^0]: D. Schulte, 8th Linear Collider School 2013, Main Linac A1-2 22

[^1]: D. Schulte, 8th Linear Collider School 2013, Main Linac A1-2 23

[^2]: D. Schulte, 8th Linear Collider School 2013, Main Linac A1-2

[^3]: D. Schulte, 8th Linear Collider School 2013, Main Linac A1-2

[^4]: D. Schulte, 8th Linear Collider School 2013, Main Linac A1-2 53

