Static Imperfections and Beam-Based Correction

D. Schulte

Linear Collider School, December 2013

Low Emittance Transport Challenges

- Main linac is one of the most important sources of emittance growth
- Static imperfections

```
errors of reference line, elements to reference line, elements...
excellent pre-alignment, lattice design, beam-based alignment, beam-based tuning
```

Dynamic imperfections

```
element jitter, RF jitter, ground motion, beam jitter, electronic noise,...
lattice design, BNS damping, component stabilisation, feedback, re-tuning, re-alignment
```

- Combination of dynamic and static imperfections can be severe
- Lattice design needs to balance dynamic and static effects

Emittance Budget

• CLIC

- the initial emittance has to stay below $\epsilon_x = 600\,\mathrm{nm}$ and $\epsilon_y = 10\,\mathrm{nm}$
- for static imperfections an emittance budget of $\Delta \epsilon_x = 30\,\mathrm{nm}$ and $\Delta \epsilon_y = 5\,\mathrm{nm}$ exists, which 90% of the machines have to meet
- for dynamic imperfections an emittance budget of $\Delta\epsilon_x=30\,\mathrm{nm}$ and $\Delta\epsilon_y=5\,\mathrm{nm}$ exists

ILC

- the initial emittances have to stay below $\epsilon_x=8400\,\mathrm{nm}$ and $\epsilon_y=24\,\mathrm{nm}$
- the final emittances have to stay below $\epsilon_x = 9400\,\mathrm{nm}$ and $\epsilon_y = 34\,\mathrm{nm}$
- We will limit our discussion to the vertical plane

Imperfections

- Pre-Alignment imperfections can be roughly categorised into short-distance and longdistance errors
- To first order, the imperfections can be treated as independent
 - as long as a linear main linac model is sufficient
- The short-distance misalignments give largest emittance contribution
 - misalignment of elements is largely independent
 - simulated by scattering elements around a straight line
 - or slightly more complex local model
- The long-distance misalignments are dominated by reference line system, e.g. the wire or laser tracking system
- ⇒ ignore short-distance misalignments and simulate wire errors only
 - Combined studies are mainly for completeness

Wire System for CLIC

- Reference method for CLIC
 - has been used in the LHC insertions
- A system of overlapping wires that form straight lines
- Alternative is optical measurements

Alignment Wodel (CLIC)

D. Schulte, 8th Linear Collider School 2013, Main Linac A1-2 6

Alignment Model (cont)

D. Schulte, 8th Linear Collider School 2013, Main Linac A1-2 7

Alignment Model (cont)

imperfection	with respect to	symbol	target value
BPM offset	wire reference	σ_{BPM}	14 $\mu\mathrm{m}$
BPM resolution		σ_{res}	0.1 $\mu\mathrm{m}$
accelerating structure offset	girder axis	σ_4	10 $\mu\mathrm{m}$
accelerating structure tilt	girder axis	σ_t	200 μ radian
articulation point offset	wire reference	σ_5	12 $\mu\mathrm{m}$
girder end point	articulation point	σ_6	$5\mu\mathrm{m}$
wake monitor	structure centre	σ_7	$5\mu\mathrm{m}$
quadrupole roll	longitudinal axis	σ_r	$100\mu\mathrm{radian}$

Assumed Survey Performance

Element	error	with respect to	alignment	
			ILC	CLIC
Structure	offset	girder	$300\mu\mathrm{m}$	$10\mu\mathrm{m}$
Structure	tilts	girder	300μ radian	$200(*)\mu{\rm m}$
Girder	offset	survey line	$200\mu\mathrm{m}$	$9.4\mu\mathrm{m}$
Girder	tilt	survey line	20μ radian	$9.4\mu\mathrm{radian}$
Quadrupole	offset	girder/survey line	$300\mu\mathrm{m}$	$17\mu\mathrm{m}$
Quadrupole	roll	survey line	300μ radian	$\leq 100 \mu \text{radian}$
BPM	offset	girder/survey line	$300\mu\mathrm{m}$	$14\mu\mathrm{m}$
BPM	resolution	BPM center	$\approx 1 \mu \mathrm{m}$	$0.1 m \mu m$
Wakefield mon.	offset	wake center		$5\mu\mathrm{m}$

- In ILC specifications have much larger values than in CLIC
 - more difficult alignment in super-conducting environment
 - dedicated effort for CLIC needed
- Wakefield monitors are currently only foreseen in CLIC
 - but could be an option also in ILC

Impact on the Beam

Misalignment and Wakefields

- We use a two particle model to determine the trajectory change of the second particle for a structure with length L with an offset δ and wakefield $W_{\perp}(z)$
 - particles have same energy for simplicity
 - charge of driving particle is Ne, second particle is a distance z behind
- The kick of one structure is

$$\Delta y' = \frac{W_{\perp}(z)Ne^2L}{E}\delta$$

• We calculate the kick in normalised phase space

$$\Delta y_N' = \sqrt{\beta \gamma} \frac{W_{\perp}(z) N e^2 L}{E} \delta$$

• Summing over many elements gives the final normalised positions

$$y_N = \sum_i \sin(\phi_f - \phi_i) \sqrt{\frac{\beta_i}{\gamma_i}} \frac{W_{\perp}(z) N e^2 L_i}{mc^2} \delta_i$$

$$y'_N = \sum_i \cos(\phi_f - \phi_i) \sqrt{\frac{\beta_i}{\gamma_i}} \frac{W_{\perp}(z) N e^2 L_i}{mc^2} \delta_i$$

Misalignment and Wakefields II

Using

$$y_N = \sum_{i} \sin(\phi_f - \phi_i) \sqrt{\frac{\beta_i}{\gamma_i}} \frac{W_{\perp}(z) N e^2 L_i}{mc^2} \delta_i$$
$$y_N' = \sum_{i} \cos(\phi_f - \phi_i) \sqrt{\frac{\beta_i}{\gamma_i}} \frac{W_{\perp}(z) N e^2 L_i}{mc^2} \delta_i$$

 \Rightarrow we very bad case is $\delta_i = \delta \sin(\phi_f - \phi_i)$, e.g.

$$y_N = \sum_{i} \sin^2(\phi_f - \phi_i) \sqrt{\frac{\beta_i}{\gamma_i}} \frac{W_{\perp}(z) N e^2 L_i}{mc^2} \delta$$

$$y_N' = \sum_{i} \cos(\phi_f - \phi_i) \sin(\phi_f - \phi_i) \sqrt{\frac{\beta_i}{\gamma_i}} \frac{W_{\perp}(z) N e^2 L_i}{mc^2} \delta$$

 \Rightarrow for independent δ_i with RMS expectation value σ

$$\langle (y_N)^2 \rangle = \sum_i \sin^2(\phi_f - \phi_i) \frac{\beta_i}{\gamma_i} \left(\frac{W_\perp(z) N e^2 L_i}{mc^2} \right)^2 \sigma^2$$
$$\langle (y_N')^2 \rangle = \sum_i \cos^2(\phi_f - \phi_i) \frac{\beta_i}{\gamma_i} \left(\frac{W_\perp(z) N e^2 L_i}{mc^2} \right)^2 \sigma^2$$

Emittance Growth

• The impact on the emittance is

$$\Delta \epsilon_y \propto (\Delta y')^2$$

Hence

$$\Delta \epsilon_{y,i} = a_i \beta \gamma \left(\frac{W_{\perp}(z) N e^2 L}{E} \delta \right)^2$$

$$\langle \Delta \epsilon_y \rangle = \sum_i a_i \frac{\beta_i}{\gamma_i} \left(\frac{W_{\perp}(z) N e^2 L}{m c^2} \right)^2 \sigma^2$$

• The emittance growth per energy gain/unit length is

$$\Delta \epsilon_y \propto \frac{\beta}{\gamma} \left(\frac{W_{\perp}(z) N e^2}{m c^2} \sigma \right)^2 L$$

Reminder: Kick and Emittance Growth

$$\begin{split} y_{new}'^2 &= \frac{1}{2} \left((-y' + \delta)^2 + (y' + \delta)^2 \right) \\ &\to y_{new}'^2 = \frac{1}{2} \left((y'^2 - 2y'\delta + \delta^2) + (y'^2 + 2y'\delta + \delta^2) \right) \\ &\to y_{new}'^2 = y'^2 + \delta^2 \end{split}$$

Calulating the emittance (no correlation)

$$\epsilon = \sqrt{< y^2 > < y'^2 >}$$

we find

$$\epsilon_{new} = \sqrt{\sigma_y^2(\sigma_{y'}^2 + \delta^2)}$$

$$\frac{\epsilon_{new}}{\epsilon_{old}} = \sqrt{\frac{\sigma_y^2(\sigma_{y'}^2 + \delta^2)}{\sigma_y^2 \sigma_{y'}^2}}$$

$$\frac{\epsilon_{new}}{\epsilon_{old}} = \sqrt{\frac{(\sigma_{y'}^2 + \delta^2)}{\sigma_{y'}^2}}$$

$$\frac{\epsilon_{new}}{\epsilon_{old}} \approx 1 + \frac{1}{2} \frac{\delta^2}{\sigma_{y'}^2}$$

Note: after filamentation (or if δ results from many kicks at different phases)

$$y_{new}^{\prime 2} = y^{\prime 2} + \frac{1}{2}\delta^2$$
 $y_{new}^2 = y^2 + \frac{1}{2}\delta^2$

Hence

$$\frac{\epsilon_{new}}{\epsilon_{old}} = 1 + \frac{1}{2} \frac{\delta^2}{\sigma_{y'}^2}$$
$$\Delta \epsilon \propto \delta^2$$

Misalignment and Spurious Dispersion

- We use a two particle model to determine the trajectory change of the second particle with respect to the first
 - Note: In this case both particles are kicked, but since we look at the static effect we can remove the average kick
 - by the way the same is true for the wakefield kick
- A particle at nominal energy is kicked by

$$\Delta y_0' = \frac{y_q}{f}$$

a particle with a different energy $E = E_{nom}(1 + \delta)$ is kicked as

$$\Delta y_1' = \frac{y_q}{f(1+\delta)}$$

the difference is

$$\Delta y_1' - \Delta y_0' \approx -\frac{y_q}{f} \delta$$

Impact of Element Offset (ILC)

• Consider case with no correction

Error	with respect to	value	$\Delta\gamma\epsilon_y$ [nm]
Cavity offset	module	$300 \ \mu \mathrm{m}$	3.5
Cavity tilt	module	$300 \mu \text{radian}$	2600
BPM offset	module	$300~\mu\mathrm{m}$	0
Quadrupole offset	module	$300~\mu\mathrm{m}$	700000
Quadrupole roll	module	$300 \mu \text{radian}$	2.2
Module offset	perfect line	$200~\mu\mathrm{m}$	250000
Module tilt	perfect line	$20~\mu \mathrm{radian}$	880

- \Rightarrow Need to do much better
- \Rightarrow Will align with the beam

Beam-Based Tuning

Beam-Based Alignment and Tuning Strategy

- Make beam pass linac
 - one-to-one correction
- Remove dispersion, align BPMs and quadrupoles
 - dispersion free steering
 - ballistic alignment
 - kick minimisation
- Remove residual dispersive and wakefield effects
 - accelerating structure alignment (CLIC only)
 - emittance tuning bumps
- Tune luminosity
 - tuning knobs

BPM Readings in One-To-One Correction (CLIC)

- Beam position in BPMs before and after one-toone correction shown
 - after corrections no offsets remain
- Real position of beam shown in lower plot
 - BPMs are misaligned

BPM Readings

-30

1950

1960

1970

1980

BPM#

1990

- Beam position in BPMs before and after one-toone correction shown
 - after corrections no offsets remain
- Real position of beam shown in lower plot
 - BPMs are misaligned

2000

2010

Emittance Growth

200

100

- Initial emittance growth is enormous
- After one-to-one correction growth is still large

500

1000

BPM#

1500

2000

Comparison Before and After One-To-One (ILC)

- The huge impact of the quadrupoles is mitigated using one-to-one alignment
 - each corrector is used to centre the beam in the next BPM downstream
- \Rightarrow The problem of the quadrupoles is solved but now we have a BPM problem

Error	with respect to	value	$\Delta\gamma\epsilon_y$ [nm]	$\Delta \gamma \epsilon_{y,121}$ [nm]
Cavity offset	module	$300 \ \mu \mathrm{m}$	3.5	0.2
Cavity tilt	module	$300 \mu \text{radian}$	2600	< 0.1
BPM offset	module	$300~\mu\mathrm{m}$	0	360
Quadrupole offset	module	$300~\mu\mathrm{m}$	700000	0
Quadrupole roll	module	$300 \mu \text{radian}$	2.2	2.2
Module offset	perfect line	$200~\mu\mathrm{m}$	250000	155
Module tilt	perfect line	$20~\mu$ radian	880	1.7

Static Tolerances and Accuracies for One-To-One Correction

Element	error	with respect to	tolerance	
			CLIC ILC	
Structure	offset	beam	$5.8\mu\mathrm{m}$	$\approx 700 \mu \mathrm{m}$
Structure	tilt	beam	220μ radian	$\approx 1000 \mu \text{radian}$
Quadrupole	offset	straight line		
Quadrupole	roll	axis	240μ radian	$190\mu\mathrm{radian}$
BPM	offset	straight line	$0.44\mu\mathrm{m}$	$15\mu\mathrm{m}$
BPM	resolution	BPM center	$0.44\mu\mathrm{m}$	$15\mu\mathrm{m}$

Element	error	with respect to	alignment	
			ILC	CLIC
Structure	offset	girder	$300\mu\mathrm{m}$	$10\mu\mathrm{m}$
Structure	tilts	girder	300μ radian	$200(*) \mu { m m}$
Girder	offset	survey line	$200\mu\mathrm{m}$	$9.4\mu\mathrm{m}$
Girder	tilt	survey line	20μ radian	$9.4\mu\mathrm{radian}$
Quadrupole	offset	girder/survey line	$300\mu\mathrm{m}$	$17\mu\mathrm{m}$
Quadrupole	roll	survey line	300μ radian	$\leq 100 \mu \text{radian}$
BPM	offset	girder/survey line	$300\mu\mathrm{m}$	$14\mu\mathrm{m}$
BPM	resolution	BPM center	$\approx 1 \mu \mathrm{m}$	$0.1\mu\mathrm{m}$
Wakefield mon.	offset	wake center		$5\mu\mathrm{m}$

Dispersion Free Correction

- Basic idea: use different beam energies
- NLC: switch on/off different accelerating structures
- CLIC (ILC): accelerate beams with different gradient and initial energy
 - try to do this in a single pulse (time resolution)

Optimise trajectories for different energies together:

$$S = \sum_{i=1}^{n} \left(w_i(x_{i,1})^2 + \sum_{j=2}^{m} w_{i,j}(x_{i,1} - x_{i,j})^2 \right) + \sum_{k=1}^{l} w'_k(c_k)^2$$

- Last term is omitted
- Idea is to mimic energy differences that exist in the bunch with different beams

Simple DFS Example

- ullet BPM in the centre is misaligned by y_0
 - first corrector moves beam by $c=L\delta$ in this position
 - second (-2δ) and third (δ) correctors remove oscillation

• We minimise

$$(c - y_0)^2 + w \left(c \frac{\Delta E}{E}\right)^2$$

which yields

$$0 = \frac{\partial}{\partial c} (c - y_0)^2 + w \left(c \frac{\Delta E}{E} \right)^2$$
 (1)

$$c = \frac{y_0}{1 + w \left(\frac{\Delta E}{E}\right)^2} \tag{2}$$

Dispersion Free Correction BPM Readings

- In the one-to-one corrected machine an offenergy beam takes a very different trajectory
 - this dispersion is visible in the BPMs and is a cause of emittance growth
- After DFS the trajectories of different energy beams are very similar
 - smoother trajectory found

Dispersion Free Correction BPM Readings

- In the one-to-one corrected machine an offenergy beam takes a very different trajectory
 - this dispersion is visible in the BPMs and is a cause of emittance growth
- After DFS the trajectories of different energy beams are very similar
 - smoother trajectory found

Dispersion Free Correction Emittance

- The emittance growth is largely reduced by DFS
 - but still too large
- Main cause of emittance growth
 - trajectory is smooth but not well centred in the structures
 - effective coherent structure offset
 - structure initial scatter remains uncorrected

Emittance Growth (ILC)

Error	with respect to	value	$\Delta \gamma \epsilon_y$ [nm]	$\Delta\gamma\epsilon_{y,121}$ [nm]	$\Delta \gamma \epsilon_{y,dfs}$ [nm]
Cavity offset	module	$300 \; \mu {\rm m}$	3.5	0.2	0.2(0.2)
Cavity tilt	module	$300 \mu \text{radian}$	2600	< 0.1	1.8(8)
BPM offset	module	$300~\mu\mathrm{m}$	0	360	4(2)
Quadrupole offset	module	$300~\mu\mathrm{m}$	700000	0	0(0)
Quadrupole roll	module	$300 \mu \text{radian}$	2.2	2.2	2.2(2.2)
Module offset	perfect line	$200~\mu\mathrm{m}$	250000	155	2(1.2)
Module tilt	perfect line	$20 \mu \text{radian}$	880	1.7	

- The results of the reference DFS method is quoted, results of a different implementation in brackets
- Note in the simulations the correction the quadrupoles had been shifted, other wise some residual effect of the quadrupole misalignment would exist

Beam-Based Structure Alignment (CLIC only)

- Each structure is equipped with a wake-field monitor (RMS position error $5 \mu m$)
- Up to eight structures on one movable girders
- ⇒ Align structures to the beam
- Assume identical wake fields
 - the mean structure to wakefield monitor offset is most important
 - in upper figure monitors are perfect, mean offset structure to beam is zero after alignment
 - scatter around mean does not matter a lot
- With scattered monitors
 - final mean offset is σ_{wm}/\sqrt{n}
- In the current simulation each structure is moved independently
- A study has been performed to move the articulation points

- For our tolerance $\sigma_{wm}=5\,\mu\mathrm{m}$ we find $\Delta\epsilon_y\approx 0.5\,\mathrm{nm}$
 - some dependence on alignment method

Structure Alignment

- Beam trajectory is hardly changed by structure alignment
 - beam is re-steered into BPMs
- But emittance growth is strongly reduced

Final Emittance Growth (CLIC)

imperfection	with respect to	symbol	value	emitt. growth
BPM offset	wire reference	σ_{BPM}	14 $\mu\mathrm{m}$	$0.367\mathrm{nm}$
BPM resolution		σ_{res}	0.1 $\mu\mathrm{m}$	$0.04\mathrm{nm}$
accelerating structure offset	girder axis	σ_4	10 $\mu\mathrm{m}$	$0.03\mathrm{nm}$
accelerating structure tilt	girder axis	σ_t	200 μ radian	$0.38\mathrm{nm}$
articulation point offset	wire reference	σ_5	12 $\mu\mathrm{m}$	$0.1\mathrm{nm}$
girder end point	articulation point	σ_6	$5\mu\mathrm{m}$	$0.02\mathrm{nm}$
wake monitor	structure centre	σ_7	$5\mu\mathrm{m}$	$0.54\mathrm{nm}$
quadrupole roll	longitudinal axis	σ_r	100 μ radian	$\approx 0.12\mathrm{nm}$

- Selected a good DFS implementation
 - trade-offs are possible
- Multi-bunch wakefield misalignments of $10\,\mu\mathrm{m}$ lead to $\Delta\epsilon_y\approx 0.13\,\mathrm{nm}$
- Performance of local prealignment is acceptable

Growth Along Main Linac

- Emittance growth along the main linac due to the different imperfections
- Growth is mainly constant per cell
 - follows from first principles applied during lattice design
- Exception is structure tilt
 - due to uncorrelated energy spread
 - flexible weight to be investigated
- Some difference for BPMs
 - due to secondary emittance growth

Emittance Tuning Bumps

- Emittance (or luminosity) tuning bumps can further improve performance
 - globally correct wakefield by moving some structures
 - similar procedure for dispersion
- Need to monitor beam size
- Optimisation procedure
 - measure beam size for different bump settings
 - make a fit to determine optimum setting
 - apply optimum
 - iterate on next bump

Tuning Bumps (ILC)

- The emittance growth after dispersion steering is still too large
 - ⇒ further improvement needed
- Possible solution are emittance tuning bumps
 - measure the beam size after the main linac, i.e. with a laser wire
 - modify the beam dispersion at the beginning and end of the main linac to minimise beam size

P. Eliasson et al.

Remark: Dependence on Weights (Old CLIC Parameters)

- For TRC parameters set
- One test beam is used with a different gradient and a different incoming beam energy
- \Rightarrow BPM position errors are less important at large w_1
- \Rightarrow BPM resolution is less important at small w_1
- \Rightarrow Need to find a compromise
- ⇒ Cannot give "the" tolerance for one error source

Ballistic Alignment

- Beam-line is divided into bins (12 quadrupoles)
- Quadrupoles in a bin are switched off
- Beam is steered into last BPM of bin
- BPMs are realigned to beam
- Quadrupoles are switched on
- Few-to-few steering is used

• Typical problems are residual fields

Kick Minimisation

- First align BPMs to quadrupoles
 - shunt quadrupole field
 - observe beam motion
 - move quadrupole/beam to a position that shunting does not kick beam any more
 - beam now defines BPM target reading in quadrupole
- Now minimise target function

$$S = \sum_{i=1}^{n} (c_i^2 + wx_i^2)$$

• Main problem shift of quadrupole centre with strength

Misalignment of BPM to Quadrupole due to Centre Motion

Initial deflection

$$x_0' = Kx_0$$

deflection for shunted quadrupole

$$x_1' = (K + \Delta K)(x_0 + \delta)$$

beam does not move if

$$x_0' = x_1'$$

hence

$$Kx_0 = (K + \Delta K)(x_0 + \delta)$$

$$\Rightarrow x_0 = -\delta \frac{K + \Delta K}{K}$$

 \Rightarrow As long as ΔK is small and $\delta \approx a \Delta K/K$

$$x_0 \approx -a$$

Long Distance Alignment

- In most simulations elements are scattered around a straight line
- In reality, the relative misalignments of different elements depends on their distance
- To be able to simulate this, our simulation code can read misalignments from a file
 - simulation of pre-alignment is required
- To illustrate long-wavelength misalignments, simulations have been performed
 - cosine like misalignment used

Long Wavelength Tolerance I (Old CLIC)

Long Wavelength Tolerance II (Old CLIC)

Long Wavelength Tolerance III (Old CLIC)

Wire System Misalignment Modelling

- Received a number of misalignments from Thomas
- Used 50 seeds for each error set
- Switched from one wire 1 to 2 at end point of 1 and back to 1 at end point of 2
- Used linear interpolation in between wire endpoints
 - no sag error
 - no error of geoid

Beam-Based Alignment

- Flat steering used first
- Dispersion free steering using settings from baseline algorithm
- RF structure alignment
- Different cases marked by date
- ⇒ RF Alignment is very important

Impact on Element Positions

D. Schulte, 8th Linear Collider School 2013, Main Linac A1-2 46

Preliminary Results

- ⇒ Significant impact of wire position sensor accuracy
- \Rightarrow Small impact of number of pits
- ⇒ The first results look very promising but more complete model being developed

Curved Main Linac (ILC)

Two main reasons why one might want to have a tunnel that follows the earth curvature

- one can stay close to the surface everywhere (but site dependent)
- in ILC, the helium level will follow the equipontential of the gravity

But there are some problems for the beam dynamics

- one needs to guide the beam on a curved orbit this requires introduction of dispersion
- the dispersion makes the machine operation more difficult

In ILC the arguments for the cryogenics where considered important, so a curved tunnel is chosen

In CLIC there was no benefit to go to a curved tunnel, so the laser-straight option is preferred.

Dispersion

ullet We deflect a particle of energy E_1 with a dipole corrector (offsetting a quadrupole has exactly the same effect) the resulting deflection angle is

$$\delta_1' \approx 0.3 \frac{\text{GeV}}{\text{Tm}^2} \frac{BL}{E_1}$$

If we have a second particle at a different energy E_2 it is deflected differently

$$\delta_2' \approx 0.3 \, \frac{\text{GeV}}{\text{Tm}^2} \frac{BL}{E_2}$$

so the two particles will take different trajectories. The different is described by the dispersion $D_{x,y}$ with

$$D_x = \frac{\partial x}{\partial \delta} \qquad D_y = \frac{\partial y}{\partial \delta}$$

Dispersion in ILC

- Find a periodic solution for the dispersion
- ⇒ Projected emittance is varying but final value is good
 - good example of projected emittance
 - Particles with constant 1% energy difference shown
 - Dispersion is 100 times larger

Initial Energy vs. Gradient

- The incoming beam has an energy spread
- Different longitudinal slices of the beam are accelerated with different gradients
- ⇒ These path difference need not be the same

Impact of a Curved Tunnel

- If the tunnel follows the earth curvature one needs to introduce dispersion along the main linac
 - ⇒ beams of different energy will take different paths

The dispersion is measured using

$$D \approx \frac{y_1 - y_2}{E_1 - E_2}$$

the error of the measured value is given by the BPM resolution

$$\sigma_D^2 \approx \frac{2\sigma_{res}^2}{(E_1 - E_2)^2}$$

If we introduce an BPM calibration error a such that the measured position y_{meas} is $y_{meas} = (1+a)y_{real}$ and assume σ_a we get

$$\sigma_D^2 \approx \frac{2\sigma_{res}^2}{(E_1 - E_2)^2} + \frac{\sigma_a^2}{E_1}$$

Single Bunch Dispersion Steering Simulations

- Aim is 90% of machines at $\Delta \epsilon_y \leq 10 \, \mathrm{nm}$
- P. Eliasson, K. Kubo,
 A. Latina, P. Lebrun, F.
 Poirier, K. Ranjan, D.
 Schulte, J. Smith, N.
 Soljak, N. Walker...
- Not all results are benchmarked against others
 - small differences in the assumptions etc.
- Consensus is:
 - beam-based alignment is close to the target but not quite sufficient
 - some further improvement needed with other means

Alignment of Beginning of Main Linac

• Use bunch compressor (ILC shown)

Performing the Correction

We determine the response matrix of our bin with m BPMs and n correctors First we measure the response matrix B with $b_{i,k}$ the change of beam position in BPM i due to a change of corrector k

$$\Delta \vec{y} = B\delta \vec{c}$$

If m=n one can solve this by inversion, if m>n one can use the pseudo inverse or calculate

$$\vec{c} = (BbB^T))^{-1}B^T\vec{y}$$

If we use more than one beam (DFS) we can use

$$B = \begin{pmatrix} B_0 \\ \sqrt{w_1}(B_1 - B_0) \\ \dots \\ \sqrt{w_k}(B_k - B_0) \end{pmatrix}$$

Other options are to use a SVD decomposition or a MICADO type algorithm

MICADO

- One employs MICADO if one wants to limit the number of correctors to be used
- The algorithm
 - for each corrector calculate how much it would improve the figure of merit
 - chose the most efficient one
 - for each corrector calculate how much it would improve the figure of merit with the first corrector
 - chose the most efficient one
 - continue to add correctors until predefined number is reached
 - apply the correction
- MICADO is very good if the correction steps tend to be small compared to the minimum step size

Summary

- We realised that static imperfections can have dramatic impact on the luminosity
- The most important imperfection for the main linac are the misalinement of elements in the tunnel due to the limited accuracy of the pre-aligment system
- Simple one-to-one steering can correct the impact of quadrupole misalignments
- Dispersion free steering can cure the impact of BPM misalignment
- Structure alignment with wake monitors can reduce the impact of structure misalignments
- Emittance tuning bumps can also be used