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Linear beam dynamics 
overview!

 Yannis PAPAPHILIPPOU!
Accelerator and Beam Physics group!

Beams Department!
CERN"

Eighth International Accelerator School for Linear Colliders"
4-15 December 2013, Antalya!

Lecture A3a: Damping Rings
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2!

Outline – Transverse transfer matrices!

n Hill’s equations!
q Derivation!
q Harmonic oscillator!

n Transport Matrices !
q Matrix formalism!
q Drift!
q Thin lens!
q Quadrupoles!
q Dipoles!

n Sector magnets!
n Rectangular magnets!

q Doublet!
q FODO!
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3!

Equations of motion – Linear fields !
n  Consider s-dependent fields from dipoles and normal 

quadrupoles!
n  The total momentum can be written ! !!
n  With magnetic rigidity !           !  and normalized gradient 

! ! ! ! ! ! ! ! !
! ! !the equations of motion are!

n  Inhomogeneous equations with s-dependent coefficients!
n  Note that the term 1/ρ2 corresponds to the dipole week 

focusing"
n  The term ΔP/(Pρ) represents off-momentum particles "
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4!

Hill’s equations!
n  Solutions are combination of the ones from the !            

homogeneous and inhomogeneous equations!
n  Consider particles with the design momentum. !                        

The equations of motion become !

!with!
n   Hill’s equations of linear transverse particle motion"
n  Linear equations with s-dependent coefficients (harmonic 

oscillator with time dependent frequency)!
n  In a ring (or in transport line with symmetries), coefficients  

are periodic!
n  Not straightforward to derive analytical solutions for whole 

accelerator!

George Hill 
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5!

Harmonic oscillator – spring!

u 

u 

n  Consider K(s) = k0 = constant!

n  Equations of harmonic oscillator 
with solution!
!!
!!

with!
! ! ! !for k0 > 0!

!
! ! ! !for k0 < 0!

  

n  Note that the solution can be written in matrix form 
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6!

n  General transfer matrix from s0 to s!

n  Note that ! ! ! ! ! ! !         !
!which is always true for conservative systems!

n  Note also that!

n  The accelerator can be build by a series of matrix multiplications!

from s0 to s1 

from s0 to s2 

from s0 to s3 

from s0 to sn 

Matrix formalism!

… 
S0 

S1 S2 S3 Sn-1 

Sn 



D
am

pi
ng

 ri
ng

s, 
Li

ne
ar

 C
ol

lid
er

 S
ch

oo
l 2

01
3!

7!

n   System with mirror symmetry!

Symmetric lines!

S 

n   System with normal symmetry!

S 
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8!

!to get a total 4x4 matrix!

4x4 Matrices!
n  Combine the matrices for each plane!

Uncoupled motion 
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9!

Transfer matrix of a drift!

n  Consider a drift (no magnetic elements) of length L=s-s0!

!

n  Position changes if particle has a slope which remains unchanged.!

0 L 

u’ 

u 

u’⋅L 

s 

L

Real Space Phase Space 

Before 

After 
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10!

u’ 

u

(De)focusing thin lens!

u’ 

u

0 f 

n  Consider a lens with focal length ±f!

n  Slope diminishes (focusing) or increases 
(defocusing) for positive position, which remains 
unchanged.!

After 
Before 

0 f 

Before 
After 
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11!

n  Consider a quadrupole magnet of length L = s-s0. 
The field is!

n  with normalized quadrupole gradient (in m-2)!

The transport through a quadrupole is!

u’ 

u 

Quadrupole!

0 L s 



D
am

pi
ng

 ri
ng

s, 
Li

ne
ar

 C
ol

lid
er

 S
ch

oo
l 2

01
3!

12!

n  For a focusing quadrupole (k>0)!

n  For a defocusing quadrupole (k<0)!

n  By setting!

n  Note that the sign of k or f is now absorbed inside the symbol!
n  In the other plane, focusing becomes defocusing and vice 

versa"

(De)focusing Quadrupoles!
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13!

n  Consider a dipole of (arc) length L. !
n  By setting  in the focusing quadrupole matrix ! !the 

transfer matrix for a sector dipole becomes "

!
!
!with a bending radius!

n  In the non-deflecting plane ! !and!

n  This is a hard-edge model. In fact, there is some edge 
focusing in the vertical plane!

n  Matrix generalized by adding gradient (synchrotron magnet)!

Sector Dipole!

θ 

L 
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14!

n  Consider a rectangular dipole with bending angle θ. At each edge of 
length ΔL, the deflecting angle is changed by!

!i.e., it acts as a thin defocusing lens with focal length!
n  The transfer matrix is ! ! ! !with"

n  For θ<<1, δ=θ/2!
n  In deflecting plane (like drift),          in non-deflecting plane (like sector)!

Rectangular Dipole!

θ 

ΔL 
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15!

Quadrupole doublet!

x 

L 

n  Consider a quadrupole doublet, 
i.e. two quadrupoles with focal 
lengths f1 and f2 separated by a 
distance L. !

n  In thin lens approximation the 
transport matrix is!

!with the total focal length !

n  Setting f1 = - f2 = f!
n  Alternating gradient focusing seems overall focusing !
n  This is only valid in thin lens approximation"
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16!

FODO Cell!
n  Consider defocusing quad 
“sandwiched” by two focusing 
quads with focal lengths ± f.!

n  Symmetric transfer matrix from 
center to center of focusing quads!

!with the transfer matrices!

n  The total transfer matrix is!

L L 
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17!

Outline – Betatron functions!
n General solutions of Hill’s equations!

q Floquet theory!
n Betatron functions!
n Transfer matrices revisited!

q General and periodic cell!
n General transport of betatron functions!

q Drift!
q Beam waist!
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18!

Solution of Betatron equations!
n  Betatron equations are linear 

! ! ! ! ! ! ! ! !
! ! ! ! !with periodic coefficients !

n  Floquet theorem states that the solutions are!
!!
!where w(s), ψ(s) are periodic with the same period !

n  Note that solutions resemble the one of harmonic oscillator!

n  Substitute solution in Betatron equations!

0 0 
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19!

Betatron functions!
n  By multiplying with w the coefficient of sin"

!
n  Integrate to get !

n  Replace ψ’ in the coefficient of cos and obtain"
!!

n  Define the Betatron or twiss or lattice functions (Courant-
Snyder parameters)!
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20!

Betatron motion!
n  The on-momentum linear betatron motion of a particle is 

described by!

with ! ! the twiss functions!

the betatron phase"

n  By differentiation, we have that the angle is!

    and the beta function !is defined by the envelope equation"
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21!

Courant-Snyder invariant!
n  Eliminating the angles by the position and slope we define 

the Courant-Snyder invariant!

n  This is an ellipse in phase space with area πε"
n  The twiss functions ! !have a geometric meaning!

n  The beam envelope is!

n  The beam divergence!

!!
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22!

General transfer matrix!
n  From equation for position and angle we have!

n  Expand the trigonometric formulas and set ψ(0)=0 to get 
the transfer matrix from location 0 to s!

!with!
!
!
!
!
and ! ! !the phase advance"
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23!

Periodic transfer matrix!
n  Consider a periodic cell of length C!
n  The optics functions are! ! ! !                   !

!and the phase advance!

n  The transfer matrix is !

n  The cell matrix can be also written as!
!
!!
!with ! !   and the Twiss matrix"
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24!

Stability conditions!
n From the periodic transport matrix !
!and the following stability criterion ! ! !                   !

!
n From transfer matrix for a cell!
!!
!
!we get!



D
am

pi
ng

 ri
ng

s, 
Li

ne
ar

 C
ol

lid
er

 S
ch

oo
l 2

01
3!

25!

Tune and working point 
n In a ring, the tune is defined from the 1-turn phase 

advance 

 i.e. number betatron oscillations per turn 
n Taking the average of the betatron tune around the ring we 

have in smooth approximation 

n Extremely useful formula for deriving scaling laws 
n The position of the tunes in a diagram of horizontal versus 

vertical  tune is called a working point 
n The tunes are imposed by the choice of the quadrupole 

strengths 
n One should try to avoid resonance conditions 
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26!

Transport of Betatron functions!
n For a general matrix between position 1 and 2!

! ! ! !    and the inverse!
!
n Equating the invariant at the two locations!

!!
and eliminating the transverse positions and angles!
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27!

Example I: Drift!
n Consider a drift with length s!

n The transfer matrix is!

n The betatron transport matrix is!

!from which!
!!

s 

γ  
β 

α 
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28!

Simplified method for betatron transport!

n Consider the beta matrix! ! !        the matrix !
! ! ! !!

! ! ! !and its transpose!

n It can be shown that!

n Application in the case of the drift!

!!
and!
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29!

Example II: Beam waist!
n For beam waist α=0 and occurs 

at s = α0/γ0!
n Beta function grows 

quadratically and is minimum in 
waist!

s 

γ  
β 

α 
waist 

n The beta at the waste for having beta minimum                    !
!!
!in the middle of a drift with length L is"

n The phase advance of a drift is!
!!
!which is π/2 when !              .  Thus, for a drift  "



D
am

pi
ng

 ri
ng

s, 
Li

ne
ar

 C
ol

lid
er

 S
ch

oo
l 2

01
3!

30!

Outline – Off-momentum dynamics!

n  Off-momentum particles  
q Effect from dipoles and quadrupoles 
q Dispersion equation  
q 3x3 transfer matrices 

n  Periodic lattices in circular accelerators!
q Periodic solutions for beta function and dispersion !
q Symmetric solution!
q 3x3 FODO cell matrix!
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31!

Effect of dipole on off-momentum particles!
n  Up to now all particles had the same momentum P0!
n  What happens for off-momentum particles, i.e. particles 

with momentum P0+ΔP?!
n  Consider a dipole with field B and !                           

bending radius ρ!
n  Recall that the magnetic rigidity  is ! ! !         

and for off-momentum particles!

n  Considering the effective length of the dipole  unchanged!

n  Off-momentum particles get different deflection (different 
orbit)!

θ 

P0+ΔP 

P0 

ρ 
ρ+δρ 
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32!

n Consider a quadrupole with gradient G "
n Recall that the normalized gradient is ! ! !      !

!!
!and for off-momentum particles!

n Off-momentum particle gets different focusing!

n This is equivalent to the effect of optical lenses on 
light of different wavelengths"

P0+ΔP 
P0 

Off-momentum particles and quadrupoles!
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33!

n  Consider the equations of motion for off-momentum 
particles!

n  The solution is a sum of the homogeneous equation (on-
momentum) and the inhomogeneous (off-momentum)!

n  In that way, the equations of motion are split in two parts!

n  The dispersion function can be defined as!
n  The dispersion equation is!

Dispersion equation!
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34!

Dispersion solution for a bend!
n  Simple solution by considering motion through a sector 

dipole with constant bending radius ρ!

n  The dispersion equation becomes!

n  The solution of the homogeneous is harmonic with 
frequency 1/ρ!

n  A particular solution for the inhomogeneous is!
!and we get by replacing  !

n  Setting D(0) = D0 and D’(0) = D0’, the solutions for 
dispersion are!
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35!

General dispersion solution!
n  General solution possible with perturbation theory and use of Green 

functions!
n  For a general matrix ! ! ! !   the solution is! !!

n  One can verify that this solution indeed satisfies the differential 
equation of the dispersion (and the sector bend)"

n  The general betatron solutions can !
!be obtained by 3X3 transfer !
!matrices including dispersion!

n  Recalling that ! !!
! ! ! ! !!

!
! ! ! ! !and!
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36!

General solution for the dispersion!
n  Introduce Floquet variables"

n  The Hill’s equations are written!
n  The solutions are the ones of an harmonic oscillator!

n  For the dispersion solution        !   , the 
inhomogeneous equation in Floquet variables is written!

n  This is a forced harmonic oscillator with solution!

n  Note the resonance conditions for integer tunes!!!!
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37!

n  For drifts and quadrupoles which do not create 
dispersion the 3x3 transfer matrices are just!

n  For the deflecting plane of a sector bend we have seen that 
the matrix is !!

!and in the non-deflecting plane is just a drift.!

3x3 transfer matrices - Drift, quad and sector bend!
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38!

3x3 transfer matrices - Synchrotron magnet!
n  Synchrotron magnets have focusing and bending included 

in their body. !
n  From the solution of the sector bend, by replacing 1/ρ with !

n  For K>0!

n  For K<0!
!
! !!
! !with !!
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39!

3x3 transfer matrices - Rectangular magnet!
n  The end field of a rectangular magnet is simply the one of 

a quadrupole. The transfer matrix for the edges is!

"

n  The transfer matrix for the body of the magnet is like for 
the sector bend!

n  The total transfer matrix is!
!
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40!

Periodic solutions!
n  Consider two points s0  and s1 for which the magnetic 

structure is repeated.!
n  The optical function follow periodicity conditions!

n  The beta matrix at this point is                              !
n  Consider the transfer matrix from s0 to s1"

n  The solution for the optics functions is  !

!with the condition                            !
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41!

Periodic solutions for dispersion!
n Consider the 3x3 matrix for propagating 

dispersion between s0 and s1"

!

n Solve for the dispersion and its derivative to get"

!with the conditions                            !



D
am

pi
ng

 ri
ng

s, 
Li

ne
ar

 C
ol

lid
er

 S
ch

oo
l 2

01
3!

42!

Symmetric solutions!
n  Consider two points s0 and s1 for which the lattice is mirror 

symmetric!
n  The optical function follow periodicity conditions!

n  The beta matrices at s0 and s1 are                              !
n  Considering the transfer matrix between s0 and s1 "

n  The solution for the optics functions is  !

!with the condition                            !
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43!

Symmetric solutions for dispersion!
n Consider the 3x3 matrix for propagating 

dispersion between s0 and s1 "
!

n Solve for the dispersion in the two locations!

n Imposing certain values for beta and dispersion, 
quadrupoles can be adjusted in order to get a 
solution!
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44!

Periodic lattices’ stability criterion revisited!
n Consider a general periodic structure of length 2L 

which contains N cells. The transfer matrix can be 
written as!

n The periodic structure can be expressed as !

!with !
n Note that because!
n Note also that  !
n By using de Moivre’s formula"

n We have the following general stability criterion!
"
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45!

3X3 FODO cell matrix!
n Insert a sector dipole in between the quads and 

consider θ=L/ρ<<1"
n Now the transfer matrix is!
!which gives!

!and after multiplication!
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46!

Longitudinal dynamics!
n  RF acceleration!
n Energy gain and phase stability!
n Momentum compaction and transition!
n Equations of motion!

q Small amplitudes!
q Longitudinal invariant!

n Separatrix!
n Energy acceptance!
n Stationary bucket!
n Adiabatic damping!
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47!

RF acceleration!
n  The use of RF fields allows an arbitrary number of 

accelerating steps in gaps and electrodes fed by RF 
generator!

n  The electric field is not longer continuous but sinusoidal 
alternating half periods of acceleration and deceleration!

n  The synchronism condition for RF period TRF and particle 
velocity v !

 !

    

€ 

L = vTRF /2 = βc π
ωRF

= βλ/2
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48!

Energy gain!
!Assuming a sinusoidal electric field ! ! !

!where the synchronous particle passes at the middle of 
the gap g, at time t = 0, the energy is!

!And the energy gain is!
!!
!and finally! ! ! ! !with the transit time !

!
!factor defined as!

!
!It can be shown that in general !

    

€ 

ΔW = qE0 cos(ωRF
z
v

)dz
−q/2

g/2

∫
    

€ 

W (r,t) = q Ezdz∫ = q E0
−g/2

g/2

∫ cos(ωRF
z
v

+ φs )dz

T
2/
2/sin qVqVW =

Θ

Θ
=Δ

    

€ 

Ez = E0 cos(ωRFt + φs)

    

€ 

T =
sin(ωg/2v)
ωg/2v

    

€ 

T =

E(0,z)cosωt(z)dz
−g/2

g/2

∫

E(0,z)dz
−g/2

g/2

∫
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49!

Phase stability!
n  Assume that a synchronicity condition is fulfilled at the 

phase φs and that energy increase produces a velocity 
increase!

n  Around point P1, that arrives earlier (N1) experiences a 
smaller accelerating field and slows down!

n  Particles arriving later (M1) will be accelerated more!
n  A restoring force that keeps particles oscillating around a 

stable phase called the synchronous phase φs!
n  The opposite happens around point P2 at π-φs, i.e. M2 and N2 

will further separate!
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50!

RF de-focusing!
!In order to have stability, the time derivative of the 
Voltage and the spatial derivative of the electric field 
should satisfy!

!
!
!In the absence of electric charge ! ! !       
the divergence of the field is ! ! ! !   
given by Maxwell’s equations!

!
!
!
!where x represents the generic transverse direction.!
!External focusing is required by using quadrupoles or 
solenoids!

      

€ 

∇
 
E = 0⇒ ∂Ex

∂x
+
∂Ez

∂z
= 0⇒ ∂Ex

∂x
> 0

    

€ 

∂V
∂t

> 0⇒ ∂E
∂z

< 0
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51!

Momentum compaction!
n  Off-momentum particles on the dispersion orbit travel in a 

different path length than on-momentum particles!
n  The change of the path length with respect to the 

momentum spread is called momentum compaction"

n  The change of circumference is!

n  So the momentum compaction is!
Δθ 

P+ΔP 

P 

ρ 

D(s)ΔP/P 
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52!

Transition energy!
n The revolution frequency of a particle is!

n The change in frequency is "

n From the relativistic momentum! !         we have!

! ! ! ! ! !   for which!!
!    ! ! ! !!
!and the revolution frequency ! ! ! ! !
!
 !The slippage factor is given by !
!!
!For vanishing slippage factor, !
!the transition energy is defined!
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53!

Synchrotron!
n  Frequency  modulated but 

also B-field increased 
synchronously to match 
energy and keep revolution 
radius constant. !

n  The number of stable 
synchronous particles is 
equal to the harmonic 
number h. They are equally 
spaced along the 
circumference.!

n  Each synchronous particle 
has the nominal energy and 
follow the nominal trajectory!

n  Magnetic field increases with 
momentum and the per turn 
change of the momentum is!

ESRF Booster
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54!

Phase stability on electron synchrotrons!

n  For electron synchrotrons, the relativistic γ is very large and!
! ! ! ! ! !as momentum compaction 

! ! ! ! !is positive in !most cases!
n  Above transition, an increase in energy is followed by 

lower revolution frequency !
n  A delayed particle with respect to the synchronous one will 

get closer to it (gets a smaller energy increase) and phase 
stability occurs at  the point P2 (π - φs)!
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55!

Energy and phase relation!
n  The RF frequency and phase are related 

to the revolution ones as follows !

!and!

n  From the definition of the momentum 
compaction and for electrons!

n  Replacing the revolution frequency change, the following 
relation is obtained between the energy and the RF phase 
time derivative!

c

c c
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56!

Longitudinal equations of motion!
n  The energy gain per turn with respect to the energy gain of 

the synchronous particle is!

n  The rate of energy change can be approximated by!

n  The second energy phase relation is written as!

n  By combining the two energy/phase relations, a 2nd order 
differential equation is obtained, similar the pendulum !

    

€ 

d
dt

R
cαch

dφ
dt

$ 

% 
& 

' 

( 
) +

ceV
^

2πREs
sinφ − sinφs( ) = 0
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57!

n  Expanding the harmonic functions in the vicinity of the 
synchronous phase!

n  Considering also that the coefficient of the phase derivative 
does not change with time, the differential equation reduces 
to one describing an harmonic oscillator !

! ! ! !with frequency!

n  For stability,  the square of the frequency should positive and 
real, which gives the same relation for phase stability when 
particles are above transition!

Small amplitude oscillations!

    

€ 

Ωs
2 = −

c2eαc hV
^

cosφs

R2 2πEs
    

€ 

φ
..
+Ωs

2Δφ = 0

    

€ 

cosφs < 0⇒π/2 < φs < π

    

€ 

sinφ − sinφs = sin φs + Δφ( ) − sinφs ≅ cosφsΔφ



D
am

pi
ng

 ri
ng

s, 
Li

ne
ar

 C
ol

lid
er

 S
ch

oo
l 2

01
3!

58!

n  For large amplitude oscillations the differential equation of 
the phase is written as!

n  Multiplying by the time derivative of the phase and 
integrating, an invariant of motion is obtained!

!reducing to the following expression, for small amplitude 
oscillations!

Longitudinal motion invariant!

    

€ 

φ
..

+
Ωs

2

cosφs
sinφ − sinφs( ) = 0

    

€ 

φ2
.

2
−

Ωs
2

cosφs
cosφ + φ sinφs( ) = I

    

€ 

φ2
.

2
+
Ωs

2

2
Δφ = I
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59!

Separatrix!
n  In the phase space (energy 

change versus phase), the 
motion is described by 
distorted circles in the vicinity 
of φs (stable fixed point)!

n  For phases beyond π - φs 
(unstable fixed point) the 
motion is unbounded in the 
phase variable, as for the 
rotations of a pendulum!

n  The curve passing through       
π - φs is called the separatrix 
and the enclosed area bucket!

    

€ 

φ2
.

2
−

Ωs
2

cosφs
cosφ + φ sinφs( ) = −

Ωs
2

cosφs
cos(π −φs ) + (π −φs )sinφs( )



D
am

pi
ng

 ri
ng

s, 
Li

ne
ar

 C
ol

lid
er

 S
ch

oo
l 2

01
3!

60!

n  The time derivative of the RF phase (or the energy change) 
reaches a maximum (the second derivative is zero) at the 
synchronous phase!

n  The equation of the separatrix at this point becomes!

!
n  Replacing the time derivative of the phase from the first 

energy phase relation!

n  This equation defines the energy acceptance which depends 
strongly on the choice of the synchronous phase. It plays an 
important role on injection matching and influences  
strongly the electron storage ring lifetime!

Energy acceptance!

    

€ 

φ
.

max
2 = 2Ωs

2 2 + (2φs −π ) tanφs( )

      

€ 

ΔE
Es

# 

$ 
% 

& 

' 
( 

max

= 
qV

^

π hαc Es
2cosφs + (2φs −π )sinφs( )
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61!

n  When the synchronous phase is ! ! ! ! 
chosen to be equal to 0 (below !

     transition) or π (above transition), !
     there is no acceleration. The equation !
     of the separatrix is written!

!
n  Using the (canonical) variable!

!and replacing the expression for the synchrotron frequency!
!
! ! ! ! !       . For φ= π, the bucket height is 

! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !
! ! !        and the area!

Stationary bucket!

    

€ 

φ2
.

2
= 2Ωs

2 sin2 φ
2

    

€ 

W = 2π ΔE
ωrs

= 2π EsR
h αc ωrs

φ
.

    

€ 

W = ±2 C
c

qV
^

Es

2π h αc
sin φ

2

    

€ 

Wbk = 2 C
c

eV
^

Es

2π h αc     

€ 

Abk = 2 W dφ
0

2π

∫ = 8Wbk
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62!

n  The longitudinal oscillations can be damped directly by 
acceleration itself. Consider the equation of motion when the 
energy of the synchronous particle is not constant!

n  From this equation, we obtain a 2nd order differential 
equation with a damping term!

n  From the definition of the synchrotron frequency the 
damping coefficient is!

Adiabatic damping!
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63!

Outline – Phase space concepts!
n Transverse phase space and Beam representation!
n Beam emittance!
n Liouville and normalised emittance!
n Beam matrix!
n RMS emittance!
n Betatron functions revisited!
n Gaussian distribution!
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64!

n  The equation of  the ellipse is

    with α,β,γ, the twiss parameters
n  Due to large number of  

particles, need of  a statistical 
description of  the beam, and its 
size

Transverse Phase Space!
n  Under linear forces, any 

particle moves on ellipse in 
phase space (x,x’), (y,y’).!

n  Ellipse rotates and moves 
between magnets, but its 
area is preserved.!

n  The area of the ellipse 
defines the emittance!

x

x´ 

x

x´ 
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65!

n  Beam is a set of  millions/billions of  particles (N)
n  A macro-particle representation models beam as a set of  n particles 

with n<<N
n  Distribution function is a statistical function                   

representing the number of  particles in phase space              
between 
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Beam representation!
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66!

Liouville emittance!
n  Emittance represents the phase-space volume occupied by the 

beam
n  The phase space can have different dimensions

q  2D (x, x’) or (y, y’) or (φ, Ε)
q  4D (x, x’,y, y’) or (x, x’, φ, Ε) or (y, y’, φ, Ε)
q  6D (x, x’, y, y’, φ, Ε)

n  The resolution of  my beam observation is very large compared to 
the average distance between particles.

n  The beam modeled by phase space distribution function


n  The volume of  this function on phase space is the beam Liouville 
emittance
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67!

n  The evolution of  the distribution function is described by Vlasov 
equation

n  Mathematical representation of  Liouville theorem stating the 
conservation of  phase space volume 

n  In the presence of  fluctuations (radiation, collisions, etc.) 
distribution function evolution described by Boltzmann equation

n  The distribution evolves towards a Maxwell-Boltzmann 
statistical equilibrium

Vlasov and Boltzmann equations!
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68!

 2D and normalized emittance!
n  When motion is uncoupled, Vlasov equation still holds for each 

plane individually

n  The Liouville emittance in the 2D            phase space is still 
conserved

n  In the case of  acceleration, the emittance is conserved in the      
but not in the       (adiabatic damping)

n  Considering that 

the beam is conserved in the phase space

n  Define a normalised emittance which is conserved during 
acceleration
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69!

n  We would like to determine the transformation of  the beam 
enclosed by an ellipse through the accelerator

n  Consider a vector u = (x,x’,y,y’,…) in a generalized n-
dimensional phase space. In that case the ellipse transformation is

n  Application to one dimension gives 

and comparing with 

provides the beam matrix 

which can be expanded to more dimensions 

n  Evolution of  the n-dimensional phase space from position 1 to 
position 2, through transport matrix 

Beam matrix!
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70!

n  The average of  a function on the beam distribution defined

n  Taking the square root, the following Root Mean Square 
(RMS) quantities are defined
q  RMS beam size

q  RMS beam divergence

q  RMS coupling 

Root Mean Square (RMS) beam parameters!
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71!

RMS emittance!
n  Beam modelled as macro-particles
n  Involved in processed linked to the statistical size

n  The rms emittance is defined as

n  It is a statistical quantity giving information about the minimum 
beam size

n  For linear forces the rms emittance is conserved in the case of  
linear forces

n  The determinant of  the rms beam matrix
n  Including acceleration, the determinant of  6D transport matrices is 

not equal to 1 but 
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72!

Beam betatron functions!
n  The best ellipse fitting the beam distribution is!

n  The beam betatron functions can be defined through the rms 
emittance!
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73!

n  The Gaussian distribution has a gaussian density profile in 
phase space




for which 

q  The beam boundary is

           Uniform (KV)                                Gaussian

Gaussian distribution!


