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Non-linear dynamics !
in damping rings!
Yannis PAPAPHILIPPOU!

Accelerator and Beam Physics group!
Beams Department!

CERN"

Eighth International Accelerator School for Linear Colliders"
4-15 December 2013, Antalya!

Lecture A3a: Damping Rings
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2!

Outline!
n  Gradient error!
n  Chromaticity and correcting sextupoles!
n  Perturbation of Hills equation!
n  Resonance conditions and tune-spread!
n Non-linear dynamics due to sextupoles and 
multipoles!
n  Chaotic motion and Dynamic aperture!
n  Frequency map analysis!
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3!

n  Consider the transfer matrix for 1-turn

n  Consider a gradient error in a quad. In thin element 
approximation the quad matrix with and without error are




n  The new 1-turn matrix is

which yields

Gradient error 
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4!

n  Consider a new matrix after 1 turn with a new tune 

n  The traces of  the two matrices describing the 1-turn should be 
equal
which gives

n  Developing the left hand side 

and finally 
n  For a quadrupole of  finite length, we have

Gradient error and tune-shift 
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5!

n  Consider the unperturbed transfer matrix for one turn
    
    
       with

n  Introduce a gradient perturbation between the two matrices




n  Recall that    and write the perturbed term as

where we used sin(2πδQ) ≈ 2πδQ and cos(2πδQ) ≈ 1

Gradient error and beta distortion 

B =

✓
b11 b12
b21 b22

◆
A =

✓
a11 a12
a21 a22

◆

M0 =

✓
m11 m12

m21 m22

◆
= B ·A
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6!

n  On the other hand 

and 

n  Equating the two terms 

n  Integrating through the quad

Gradient error and beta distortion 
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7!

n  Linear equations of  motion depend on the energy 
(term proportional to dispersion)

n  Chromaticity is defined as:

n  Recall that the gradient is
n  This leads to dependence of  tunes and optics 

function on energy 
n  For a linear lattice the tune shift is:

n  So the natural chromaticity is:

n  Sometimes the chromaticity is quoted as



Chromaticity 
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8!

n  The sextupole field component in the x-plane is:
n  In an area with non-zero dispersion
n  Than the field is

n  Sextupoles introduce an equivalent focusing correction 

n  The sextupole induced chromaticity is

n  The total chromaticity is the sum of  the natural and 
sextupole induced chromaticity

Chromaticity from sextupoles 

quadrupole           dipole

⇠S
x,y

= � 1

4⇡

I
⌥�

x,y

(s)S(s)D
x

(s)ds

⇠tot
x,y

= � 1

4⇡

I
�
x,y

(s) (k(s)⌥ S(s)D
x

(s)) ds
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9!

n  Introduce sextupoles in high-dispersion areas 
n Tune them to achieve desired chromaticity
n Two families are able to control horizontal and 

vertical chromaticity 
n The off-momentum beta-beating correction needs 

additional families
n  Sextupoles introduce non-linear fields (chaotic 

motion)
n  Sextupoles introduce tune-shift with amplitude

Chromaticity correction 
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10!

Normalized coordinates!
n  Recall the Floquet solutions ! ! ! !           

for betatron  motion!
n  Introduce new variables!

!

n  In matrix form!
"
n  Hill’s equation becomes !

n  System becomes harmonic oscillator with frequency 
! ! ! ! ! ! ! ! !
! ! ! !    or!

n  Floquet transformation transforms ! ! !      
phase space in circles!

!

U2 + U 02 = ✏

p
✏

1

⌫2�3/2
(
d2U
d�2

+ ⌫2U) = 0
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11!

Perturbation of Hill’s equations!
n  Hill’s equations in normalized coordinates  with harmonic 

perturbation, using ! ! !and !

!where the F is the Lorentz force from perturbing fields!
q  Linear magnet imperfections: deviation from the design dipole and 

quadrupole fields due to powering and alignment errors!
q  Time varying fields: feedback systems (damper) and wake fields 

due to collective effects (wall currents)!
q  Non-linear magnets: sextupole magnets for chromaticity correction 

and octupole magnets for Landau damping!
q  Beam-beam interactions: strongly non-linear field!
q  Space charge effects: very important for high intensity beams !
q  non-linear magnetic field imperfections: particularly difficult to 

control for super conducting magnets where the field quality is 
entirely determined by the coil winding accuracy!

U = U
x

or U
y

d2U
d�2

+ ⌫2U 0 = ⌫2�3/2F (U
x

(�
x

),U
y

(�
y

))

� = �
x

or �
y
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12!

Perturbation by periodic function!
n  In beam dynamics, perturbing fields are periodic functions!
n  The problem to solve is a generalization of the driven 

harmonic oscillator,!

    with a general periodic function         , with frequency !

n  The right side can be Fourier analyzed:!

n  The homogeneous solution is!
n  The particular solution can be found by considering that           

has the same form as         : !

n  By substituting we find the following relation for the 
Fourier coefficients of the particular solution!!

n  There is a resonance condition for infinite number of 
frequencies satisfying !

g(t) !

d2u

dt2
+ !2

0u(t) = g(t)

g(t) =
m=+1X

m=�1
ameim!t

uh(t) = u0(t) sin(!0t+ �0)

u(t)

g(t) up(t) =
m=+1X

m=�1
upmeim!t

!2
0 = m2!2

upm =
am

!2
0 �m2!2
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13!

Perturbation by single multi-pole!
n  For a generalized multi-pole perturbation, Hill’s equation is:!

!
n  As before, the multipole coefficient                     !            
can be expanded in Fourier series!
n  Following the perturbation steps, the zero-order solution is 
given by the homogeneous equation!
n  Then the position can be expressed as !
!
!

    with !
n  The first order solution is written as!

bn(�) =
1X

m=�1
bnmeim�

d2U
d�2

+ ⌫20U = ⌫20�
n
2 +1bn(�)Un�1 = bn(�)Un�1

U ⇡ U0 = W1e
i⌫0� +W�1e

�i⌫0�

Un�1
0 =

n�1X

k=0

✓
n� 1

k

◆
Wn�1�k

1 W k
�1e

i(n�1�2k)⌫0� =
n�1X

q=�n+1

W qe
iq⌫0�

Wn�2 = Wn�4 = Wn�6 = · · · = W�n+2 = 0

W q

d2U1

d�2
+ ⌫20U1 = bn(�)Un�1

0 =
n�1X

q=�n+1

m=1X

m=�1
bnmW qe

i(m+q⌫0)�

q = �n+ 1,�n+ 3, . . . , n� 1
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14!

Resonances for single multi-pole!
n  Following the discussion on the periodic perturbation, the 
solution can be found by setting the leading order solution to 
be periodic with the same frequency as the right hand side!

n  Equating terms of equal exponential powers, the  Fourier 
amplitudes are found to satisfy the relationship!
!

n  This provides the resonance condition ! !                       

or ! !         which means that there are resonant 

frequencies for  and “infinite” number of rationals!

U1 =
n�1X

q=�n+1

m=1X

m=�1
U1mqe

i(m+q⌫0)�

U1mq =
bnmW q

⌫20 � (m+ q⌫0)2

m± |q|⌫0 = ⌫0
⌫0 =

m

1± |q|
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15!

Tune-shift for single multi-pole!
n  Note that for even multi-poles and             or !             , there 
is a Fourier coefficient         , which is independent of        and 
represents the average value of the periodic perturbation!
n  The perturbing term in the r.h.s. is!
!

which can be obtained for ! !       (it is indeed an integer 
only for even multi-poles)!
n  Following the approach of the perturbed non-linear 
harmonic oscillator, this term will be secular unless a 
perturbation in the frequency is considered, thereby resulting 
to a tune-shift equal to !

! ! ! ! !         with!
!
n  This tune-shift is amplitude dependent for !       !

q = 1 m = 0

bn0W 1e
i⌫0� = ⌫20�

n
2 +1bn0

✓
n� 1
n
2 � 1

◆
Wn�1

1 W
n
2 �1
�1 ei⌫0�

k =
n

2
� 1

bn0 �

fW 2 = W1W�1�⌫ = �⌫0�
n
2 +1bn0
2

✓
n� 1
n
2 � 1

◆
fWn�2

n > 2
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16!

Magnetic multipole expansion!
n  From Gauss law of magnetostatics, a vector potential exist !

n  Assuming transverse 2D field, vector potential has only one 
component As. The Ampere’s law in vacuum (inside the 
beam pipe) !

n  Using the previous equations, the relations between field 
components and potentials are!

i.e. Riemann conditions of an analytic function!
!
Exists complex potential of ! !with  
power series expansion convergent in a circle 
with radius ! !(distance from iron yoke)!

x 

y 
iron 

rc z = x+ iy

|z| = rc
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17!

Multipole expansion II!
n  From the complex potential we can derive the fields!

n  Setting ! ! ! !!

n  Define normalized coefficients ! ! ! !
!     !

on a reference radius r0, 10-4 of the main field to get!

!
n  Note: ! !is the US convention!n� = n� 1
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18!

n  Equations of motion including any multi-pole error term, in 
both planes !
 !
 !
n  Expanding perturbation coefficient in Fourier series and 
inserting the solution of the unperturbed system on the rhs  
gives the following series: !

!
n  The equation of motion becomes!

!
n  In principle, same perturbation steps can be followed for 
getting an approximate solution in both planes!

General multi-pole perturbation!

d2U
x

d�2
x

+ ⌫20xUx

= b
n,r

(�
x

)Un�1
x

Ur�1
y

b
nr

(�
x

) =
1X

m=�1
b
nrm

eim�

x

d2U
x

d�2
x

+ ⌫20xUx

=
X

m,q

x

,q

y

b
nrm

W x

q

x

W y

q

y

ei(m+q

x

⌫0x+q

y

⌫0y)�x

Un�1
x

⇡ Un�1
0x =

n�1X

q

x

=�n+1

W
q

x

eiqx⌫0�x

Ur�1
y ⇡ Ur�1

0y =
r�1X

q
y

=�r+1

W q
y

eiqy⌫0y�x
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19!

n  The general resonance conditions is !
or ! ! !         !, with order !
n  The same condition can be obtained in the vertical plane  !
n  For all the polynomial field terms of a       -pole, the main 
excited resonances satisfy the condition                          but there 
are also sub-resonances for which ! !!
n  For  normal (erect) multi-poles, the main resonances are !

! ! !              whereas for skew multi-poles!

General resonance conditions!
m+ q

x

⌫0x + q
y

⌫0y = ⌫0x
m+ q0

x

⌫0x + q
y

⌫0y = 0 |q
x

|+ |q
y

|+ 1

!
n  If perturbation is large, all 
resonances can be potentially excited !
n  The resonance conditions form lines 
in the frequency space and fill it up as 
the order grows (the rational numbers 
form a dense set inside the real 
numbers)!

q0
x

+ q
y

= n
q0
x

+ q
y

< n

(q0
x

, q
y

) = (n, 0), (n� 2,±2), . . .

(q0
x

, q
y

) = (n� 1,±1), (n� 3,±3), . . .

2n
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20!

n  If lattice is made out of !  identical cells, and the 
perturbation follows the same periodicity, resulting in 
a reduction of the resonance conditions to the ones 
satisfying!
n  These are called ! ! ! !     
systematic !resonances!
n  Practically, any (linear) ! ! ! ! !      
lattice perturbation breaks ! ! ! ! !        
super-periodicity and any ! ! ! !   !   
random resonance can be ! ! ! ! !     
excited !
n Careful choice of the ! ! ! !         
working point is necessary!

Systematic and random resonances!
N

q
x

⌫0x + q
y

⌫0y = jN
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21!

Fixed points for 3rd order resonance!
n  In the vicinity of a third order 

resonance, three fixed points 
can be found at!

n  For ! !  all three points are 
unstable!

n  Close to the elliptic one at          
!      the motion in phase 

space is described by circles 
that they get more and more 
distorted to end up in the 
“triangular” separatrix uniting 
the unstable fixed points !

n  The tune separation from the 
resonance (stop-band width) is !

 20 =
⇡

3
,

3⇡

3
,

5⇡

3
, J20 =

✓
2�

3A3p

◆2

�

A3p
> 0

 20 = 0

� =
3A3p

2
J1/2
20

 20 =
⇡

3
,

3⇡

3
,

5⇡

3
, J20 =

✓
2�

3A3p

◆2

 20 =
⇡

3
,

3⇡

3
,

5⇡

3
, J20 =

✓
2�

3A3p

◆2
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22!

Topology of an octupole resonance!
n  Regular motion near the 
center, with curves getting 
more deformed towards a 
rectangular shape  
n  The separatrix passes 
through 4 unstable fixed points, 
but motion seems well 
contained 
n  Four stable fixed points exist 
and they are surrounded by 
stable motion (islands of 
stability) 
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23!

Path to chaos!
n  When perturbation becomes higher, motion around the separatrix 
becomes chaotic (producing tongues or splitting of the separatrix) 
n  Unstable fixed points are indeed the source of chaos when a 
perturbation is added 
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24!

Chaotic motion!
n  Poincare-Birkhoff theorem states that 
under perturbation of a resonance only an 
even number of fixed points survives (half 
stable and the other half unstable)!
n  Themselves get destroyed when 
perturbation gets higher, etc. (self-similar 
fixed points)!
n  Resonance islands grow and resonances 
can overlap allowing diffusion of particles!
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25!

Beam Dynamics: Dynamic Aperture!
n  Dynamic aperture plots often show the maximum initial values of 

stable trajectories in x-y coordinate space at a particular point in the 
lattice, for a range of energy errors.!
q  The beam size (injected or equilibrium) can be shown on the same plot.!
q  Generally, the goal is to allow some significant margin in the design - 

the measured dynamic aperture is often significantly smaller than the 
predicted dynamic aperture.!

n  This is often useful for comparison, but is not a complete 
characterization of the dynamic aperture: a more thorough analysis 
is needed for full optimization.!

5σinj

5σinj

OCS: Circular TME TESLA: Dogbone TME
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26!

Example: The ILC DR DA!

n  Dynamic aperture for  lattice with specified misalignments, 
multipole errors, and wiggler nonlinearities!

n  Specification for the phase space distribution of the injected 
positron bunch is an amplitude of Ax + Ay = 0.07m rad 
(normalized) and an energy spread of E/E  0.75%!

n  DA is larger then the specified beam acceptance!
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27!

Dynamic aperture including damping 
0.12 ms 0.6 ms 1.2 ms 

1.8 ms 2.4 ms 3 ms 

3.6 ms 4.2 ms 4.8 ms 

E. Levichev et al. PAC2009 

n  Including radiation damping and 
excitation shows that 0.7% of the 
particles are lost during the damping 

n  Certain particles seem to damp away 
from the beam core, on resonance 
islands 
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28!

Frequency map analysis!
n Frequency Map Analysis (FMA) is a numerical method 

which springs from the studies of J. Laskar (Paris 
Observatory) putting in evidence the chaotic motion in 
the Solar Systems !

n FMA was successively applied to several dynamical 
systems!
q   Stability of Earth Obliquity and climate stabilization (Laskar, 

Robutel, 1993)!
q  4D maps (Laskar 1993)!
q  Galactic Dynamics (Y.P and Laskar, 1996 and 1998)!
q  Accelerator beam dynamics: lepton and hadron rings (Dumas, 

Laskar, 1993, Laskar, Robin, 1996, Y.P, 1999, Nadolski and 
Laskar 2001)!
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29!

Motion on torus 
n  Consider an integrable Hamiltonian system of the usual form!

n  Hamilton’s equations give!

n  The actions define the surface of an invariant torus!
n  In complex coordinates the motion is described by!
!
n  For a non-degenerate system ! ! ! ! !  

there is a one-to-one correspondence between the actions and 
the frequency, a frequency map ! ! ! !      
can be defined parameterizing ! ! ! !               
the tori in the frequency space!

H(J ,', ✓) = H0(J) + ✏H1(J ,', ✓) +O(✏2)
˙�j =

@H0(J)

@Jj
= !j(J) ) �j = !j(J)t+ �j0

˙Jj = �@H0(J)

@�j
= 0 ) Jj = const.

⇣j(t) = Jj(0)e
i!jt = zj0e

i!jt

det

����
@!(J)

@J

���� = det

����
@2H0(J)

@J2

���� 6= 0

F : (I) �! (!)
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30!

Building the frequency map 
n When a quasi-periodic function ! ! ! !in 

the complex domain is given numerically, it is 
possible to recover a quasi-periodic approximation 
! ! ! ! ! ! ! ! !
! ! ! ! ! ! !                            
! ! ! ! ! ! ! ! !    

in a very precise way over a finite time span      
several orders of magnitude more precisely than 
simple Fourier techniques!

n This approximation is provided by the Numerical 
Analysis of Fundamental Frequencies – NAFF 
algorithm!

n The frequencies !and complex amplitudes        are 
computed through an iterative scheme. !

f(t) = q(t) + ip(t)

[�T, T ]

f 0(t) =
NX

k=1

a0ke
i!0

kt

!0
k a0k
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31!

Aspects of the frequency map 
n  In the vicinity of a resonance the system behaves like a 

pendulum!
n  Passing through the elliptic point for a fixed angle, a fixed 

frequency (or rotation number) is observed!
n  Passing through the hyperbolic point, a frequency jump is 

oberved !
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32!

Building the frequency map!

n  Choose coordinates (xi, yi) with px and py=0!
n  Numerically integrate the phase trajectories through the lattice for 
sufficient number of turns!
n  Compute through NAFF Qx and Qy after sufficient number of turns!
n  Plot them in the tune diagram!

F⌧ :
Rn �! Rn

p|q=q0
�! ⌫ .
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33!

Frequency maps for the LHC 

Frequency maps for the target error table (left) and an increased random 
skew octupole error in the super-conducting dipoles (right)!
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34!

Diffusion Maps 
J. Laskar, PhysicaD, 1993 

§  Calculate frequencies for two equal and successive time 
spans and compute frequency diffusion vector:!

§  Plot the initial condition space color-coded with the norm 
of the diffusion vector!
§  Compute a diffusion quality factor by averaging all 
diffusion coefficients normalized with the initial conditions 
radius!

D|t=� = �|t�(0,�/2] � �|t�(�/2,� ]

DQF =
� |D|

(I2
x0 + I2

y0)1/2

⇥
R
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35!

Diffusion maps for the LHC 

!Diffusion maps for the target error table (left) and an increased random 
skew octupole error in the super-conducting dipoles (right)!
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36!

Resonance free lattice for CLIC PDR 
n  Non linear 

optimization based 
on phase advance 
scan for minimization 
of resonance driving 
terms and tune-shift 
with amplitude!

eip(nxµx ,c+nyµy,c )
p=0

Nc−1

∑ =
1− cos Nc (nxµx,c + nyµy,c )#$ %&
1− cos(nxµx,c + nyµy,c )

= 0

Nc (nxµx,c + nyµy,c ) = 2kπ
nxµx,c + nyµy,c ≠ 2 "k π
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37!

Dynamic aperture for CLIC DR!

n  Dynamic aperture and diffusion map!
n  Very comfortable DA especially in the vertical plane!

q  Vertical beam size very small, to be reviewed especially for 
removing electron PDR!

n Need to include non-linear fields of magnets and 
wigglers!
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38!

Frequency maps for the ILC DR!

n  Frequency maps enabled the comparison and steering of 
different lattice designs with respect to non-linear dynamics !
q  Working point optimisation, on and off-momentum dynamics, effect 

of multi-pole errors in wigglers!
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39!

Working point choice for SUPERB 

S. Liuzzo et al., IPAC 2012 
n  Figure of merit for 

choosing best working 
point is sum of diffusion 
rates with a constant 
added for every lost 
particle!

n  Each point is produced 
after tracking 100 
particles!

n  Nominal working point 
had to be moved 
towards “blue” area!
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40!

n  Frequency analysis of turn-
by-turn data of beam 
oscillations produced by a 
fast kicker magnet and 
recorded on a Beam Position 
Monitors!

n  Reproduction of the non-
linear model of the 
Advanced Light Source 
storage ring and working 
point optimization for 
increasing beam lifetime!

Experimental frequency maps 
D. Robin, C. Steier, J. Laskar, and L. 
Nadolski, PRL 2000
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41!

Summary!
n  Damping rings non-linear dynamics is 
dominated by very strong sextupoles used to 
correct chromaticity !
n  Important effect of wiggler magnets!
n  Dynamic aperture computation is essential 
for assuring good injection efficiency in the 
damping rings!
n  Frequency map analysis is a very well 
adapted method for revealing global picture of 
resonance structure in tune space and enable 
detailed non-linear optimisation!


