Lecture A3a: Damping Rings

Non-linear dynamics in damping rings Yannis PAPAPHILIPPOU

 Accelerator and Beam Physics group Beams Department CERNEighth International Accelerator School for Linear Colliders 4-15 December 2013, Antalya

Outline

■ Gradient error
■ Chromaticity and correcting sextupoles
■ Perturbation of Hills equation

- Resonance conditions and tune-spread ■ Non-linear dynamics due to sextupoles and multipoles
- Chaotic motion and Dynamic aperture

■ Frequency map analysis

Gradient error

- Consider the transfer matrix for 1-turn

$$
\mathcal{M}_{0}=\left(\begin{array}{cc}
\cos (2 \pi Q)+\alpha_{0} \sin (2 \pi Q) & \beta_{0} \sin (2 \pi Q) \\
-\gamma_{0} \sin (2 \pi Q) & \cos (2 \pi Q)-\alpha_{0} \sin (2 \pi Q)
\end{array}\right)
$$

- Consider a gradient error in a quad. In thin element approximation the quad matrix with and without error are $m_{0}=\left(\begin{array}{cc}1 & 0 \\ -K_{0}(s) d s & 1\end{array}\right)$ and $m=\left(\begin{array}{cc}1 & 0 \\ -\left(K_{0}(s)+\delta K\right) d s & 1\end{array}\right)$
The new 1-turn matrix is $\mathcal{M}=m m_{0}^{-1} \mathcal{M}_{0}=\left(\begin{array}{cc}1 & 0 \\ -\delta K d s & 1\end{array}\right) \mathcal{M}_{0}$
which yields which yields

■ Consider a new matrix after 1 turn with a new tune $\chi=2 \pi(Q+\delta Q)$

$$
\mathcal{M}^{\star}=\left(\begin{array}{cc}
\cos (\chi)+\alpha_{0} \sin (\chi) & \beta_{0} \sin (\chi) \\
-\gamma_{0} \sin (\chi) & \cos (\chi)-\alpha_{0} \sin (\chi)
\end{array}\right)
$$

- The traces of the two matrices describing the 1-turn should be equal $\operatorname{Tra}\left(\mathcal{M}^{\star}\right)=\operatorname{Tra}(\mathcal{M})$ which gives $2 \cos (2 \pi Q)-\delta K d s \beta_{0} \sin (2 \pi Q)=2 \cos (2 \pi(Q+\delta Q))$
- Developing the left hand side

$$
\cos (2 \pi(Q+\delta Q))=\cos (2 \pi Q) \underbrace{\cos (2 \pi \delta Q)}_{1}-\sin (2 \pi Q) \underbrace{\sin (2 \pi \delta Q)}_{2 \pi \delta Q}
$$

and finally $4 \pi \delta Q=\delta K d s \beta_{0}$

- For a quadrupole of finite length, we have

$$
\delta Q=\frac{1}{4 \pi} \int_{s_{0}}^{s_{0}+l} \delta K \beta_{0} d s
$$

Gradient error and beta distortion

■ Consider the unperturbed transfer matrix for one turn

$$
M_{0}=\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)=B \cdot A \text { with } \quad A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

- Introduce a gradient perturbation between the two matrices

$$
\mathcal{M}_{0}^{\star}=\left(\begin{array}{ll}
m_{11}^{\star} & m_{12}^{\star} \\
m_{21}^{\star} & m_{22}^{\star}
\end{array}\right)=B\left(\begin{array}{cc}
1 & 0 \\
-\delta K d s & 1
\end{array}\right) A
$$

- Recall that $m_{12}=\beta_{0} \sin (2 \pi Q)$ and write the perturbed term as $m_{12}^{\star}=\left(\beta_{0}+\delta \beta\right) \sin (2 \pi(Q+\delta Q))=m_{12}+\delta \beta \sin (2 \pi Q)+2 \pi \delta Q \beta_{0} \cos (2 \pi Q)$ where we used $\sin (2 \pi \delta Q) \approx 2 \pi \delta Q$ and $\cos (2 \pi \delta Q) \approx 1$

Gradient error and beta distortion

- On the other hand

$$
\begin{aligned}
& a_{12}=\sqrt{\beta_{0} \beta\left(s_{1}\right)} \sin \psi, b_{12}=\sqrt{\beta_{0} \beta\left(s_{1}\right)} \sin (2 \pi Q-\psi) \\
& \text { and } m_{12}^{\star}=\underbrace{b_{11} a_{12}+b_{12} a_{22}}_{m_{12}}-a_{12} b_{12} \delta K d s=m_{12}-a_{12} b_{12} \delta K d s
\end{aligned}
$$

- Equating the two terms
$\delta \beta \sin (2 \pi Q)+2 \pi \delta Q \beta_{0} \cos (2 \pi Q)=-a_{12} b_{12} \delta K d s$
- Integrating through the quad

$$
\frac{\delta \beta}{\beta_{0}}=-\frac{1}{2 \sin (2 \pi Q)} \int_{s_{1}}^{s_{1}+l} \beta(s) \delta K(s) \cos (2 \psi-2 \pi Q) d s
$$

Chromaticity

- Linear equations of motion depend on the energy (term proportional to dispersion)
- Chromaticity is defined as: $\quad \xi_{x, y}=\frac{\delta Q x, y}{\delta p / p}$
- Recall that the gradient is $k=\frac{G}{B \rho}=\frac{e G}{p} \rightarrow \frac{\delta k}{k}=\mp \frac{\delta p}{p}$
- This leads to dependence of tunes and optics function on energy
■ For a linear lattice the tune shift is:

$$
\delta Q_{x, y}=\frac{1}{4 \pi} \oint \beta_{x, y} \delta k(s) d s=-\frac{1}{4 \pi} \frac{\delta p}{p} \oint \beta_{x, y} k(s) d s
$$

- So the natural chromaticity is:

$$
\xi_{x, y}=-\frac{1}{4 \pi} \oint \beta_{x, y} k(s) d s
$$

■ Sometimes the chromaticity is quoted as $\overline{\xi_{x, y}}=\frac{\xi_{x, y}}{Q_{x, y}}$,

- The sextupole field component in the x-plane is: $B_{y}=\frac{S}{2} x^{2}$
- In an area with non-zero dispersion $x=x_{0}+D \frac{\delta P}{P}$
- Than the field is

$$
B_{y}=\frac{S}{2} x_{0}^{2}+\underbrace{S D \frac{\delta P}{P} x_{0}}_{\text {quadrupole }}+\underbrace{\frac{S}{2} D^{2} \frac{\delta P^{2}}{P}}_{\text {dipole }}
$$

- Sextupoles introduce an equivalent focusing correction

$$
\delta k=S D \frac{\delta P}{P}
$$

- The sextupole induced chromaticity is

$$
\xi_{x, y}^{S}=-\frac{1}{4 \pi} \oint \mp \beta_{x, y}(s) S(s) D_{x}(s) d s
$$

- The total chromaticity is the sum of the natural and sextupole induced chromaticity

$$
\begin{equation*}
\xi_{x, y}^{\mathrm{tot}}=-\frac{1}{4 \pi} \oint \beta_{x, y}(s)\left(k(s) \mp S(s) D_{x}(s)\right) d s \tag{8}
\end{equation*}
$$

Chromaticity correction

- Introduce sextupoles in high-dispersion areas
- Tune them to achieve desired chromaticity
- Two families are able to control horizontal and vertical chromaticity
- The off-momentum beta-beating correction needs additional families
- Sextupoles introduce non-linear fields (chaotic motion)
- Sextupoles introduce tune-shift with amplitude
- Recall the Floquet solutions $u(s)=\sqrt{\epsilon \beta(s)} \cos \left(\psi(s)+\psi_{0}\right)$ for betatron motion

$$
u^{\prime}(s)=-\sqrt{\frac{\epsilon}{\beta(s)}}\left(\sin \left(\psi(s)+\psi_{0}\right)+\alpha(s) \cos \left(\psi(s)+\psi_{0}\right)\right)
$$

- Introduce new variables

$$
\mathcal{U}=\frac{u}{\sqrt{\beta}}, \quad \mathcal{U}^{\prime}=\frac{d \mathcal{U}}{d \phi}=\frac{\alpha}{\sqrt{\beta}} u+\sqrt{\beta} u^{\prime}, \quad \phi=\frac{\psi}{\nu}=\frac{1}{\nu} \int \frac{d s}{\beta(s)}
$$

- In matrix form $\binom{\mathcal{U}}{\mathcal{U}^{\prime}}=\left(\begin{array}{cc}\frac{1}{\sqrt{\beta}} & 0 \\ \frac{\alpha}{\sqrt{\beta}} & \sqrt{\beta}\end{array}\right)\binom{u}{u^{\prime}}$

Hill's equation becomes $\frac{1}{\nu^{2} \beta^{3 / 2}}\left(\frac{d^{2} \mathcal{U}}{d \phi^{2}}+\nu^{2} \mathcal{U}\right)=0$

- System becomes harmonic oscillator with frequency
$\binom{\mathcal{U}}{\mathcal{U}^{\prime}}=\sqrt{\epsilon}\binom{\cos (\nu \phi)}{-\sin (\nu \phi)}$ or $\quad \mathcal{U}^{2}$
Floquet transformation transforms phase space in circles

Perturbation of Hill' s equations

\square Hill's equations in normalized coordinates with harmonic perturbation, using $\mathcal{U}=\mathcal{U}_{x}$ or \mathcal{U}_{y} and $\phi=\phi_{x}$ or ϕ_{y}

$$
\frac{d^{2} \mathcal{U}}{d \phi^{2}}+\nu^{2} \mathcal{U}=\nu^{2} \beta^{3 / 2} F\left(\mathcal{U}_{x}\left(\phi_{x}\right), \mathcal{U}_{y}\left(\phi_{y}\right)\right)
$$

where the F is the Lorentz force from perturbing fields
\square Linear magnet imperfections: deviation from the design dipole and quadrupole fields due to powering and alignment errors
\square Time varying fields: feedback systems (damper) and wake fields due to collective effects (wall currents)
\square Non-linear magnets: sextupole magnets for chromaticity correction and octupole magnets for Landau damping
\square Beam-beam interactions: strongly non-linear field
\square Space charge effects: very important for high intensity beams
\square non-linear magnetic field imperfections: particularly difficult to control for super conducting magnets where the field quality is entirely determined by the coil winding accuracy

- In beam dynamics, perturbing fields are periodic functions

■ The problem to solve is a generalization of the driven harmonic oscillator, $\frac{d^{2} u}{d t^{2}}+\omega_{0}^{2} u(t)=g(t)$ with a general periodic function $g(t)$, with frequency ω

- The right side can be Fourier analyzed: $g(t)=\sum_{m=-\infty} a_{m} e^{i m \omega t}$

■ The homogeneous solution is $u_{h}(t)=u_{0}(t) \sin \left(\omega_{0} t+\phi_{0}\right)$
■ The particular solution can be found by considering that $u(t)$ has the same form as $g(t): u_{p}(t)=\sum_{m=-\infty}^{m=+\infty} u_{p m} e^{i m \omega t}$

- By substituting we find the following relation for the Fourier coefficients of the particular solution $u_{p m}=\frac{a_{m}}{\omega_{0}^{2}-m^{2} \omega^{2}}$
- There is a resonance condition for infinite number of frequencies satisfying $\omega_{0}^{2}=m^{2} \omega^{2}$

Perturbation by single

■ For a generalized multi-pole perturbation, Hill's equation is:

$$
\frac{d^{2} \mathcal{U}}{d \phi^{2}}+\nu_{0}^{2} \mathcal{U}=\nu_{0}^{2} \beta^{\frac{n}{2}+1} b_{n}(\phi) \mathcal{U}^{n-1}=\overline{b_{n}}(\phi) \mathcal{U}^{n-1}
$$

■ As before, the multipole coefficient can be expanded in Fourier series

$$
\overline{b_{n}}(\phi)=\sum_{m=-\infty}^{\infty} \overline{\overline{b_{n m}}} e^{i m \phi}
$$

\square Following the perturbation steps, the zero-order solution is given by the homogeneous equation $\mathcal{U}_{0}=W_{1} e^{i \nu_{0} \phi}+W_{-1} e^{-i \nu_{0} \phi}$ \square Then the position can be expressed as

$$
\mathcal{U}_{0}^{n-1}=\sum_{k=0}^{n-1} \overbrace{\binom{n-1}{k} W_{1}^{n-1-k} W_{-1}^{k}}^{\bar{W}_{q}} e^{i(n-1-2 k) \nu_{0} \phi}=-n+1,-n+3, \ldots, n-1
$$

$$
\text { with } \quad \bar{W}_{n-2}=\bar{W}_{n-4}=\bar{W}_{n-6}=\cdots=\bar{W}_{-n+2}=0
$$

- The first order solution is written as

$$
\frac{d^{2} \mathcal{U}_{1}}{d \phi^{2}}+\nu_{0}^{2} \mathcal{U}_{1}=\overline{b_{n}}(\phi) \mathcal{U}_{0}^{n-1}=\sum_{q=-n+1}^{n-1} \sum_{m=-\infty}^{m=\infty} \bar{b}_{n m} \bar{W}_{q} e^{i\left(m+q \nu_{0}\right) \phi}
$$

- Following the discussion on the periodic perturbation, the solution can be found by setting the leading order solution to be periodic with the same frequency as the right hand side

$$
\mathcal{U}_{1}=\sum_{q=-n+1}^{n-1} \sum_{m=-\infty}^{m=\infty} \mathcal{U}_{1 m q} e^{i\left(m+q \nu_{0}\right) \phi}
$$

■ Equating terms of equal exponential powers, the Fourier amplitudes are found to satisfy the relationship

$$
\mathcal{U}_{1 m q}=\frac{\bar{b}_{n m} \bar{W}_{q}}{\nu_{0}^{2}-\left(m+q \nu_{0}\right)^{2}}
$$

■ This provides the resonance condition $m \pm|q| \nu_{0}=\nu_{0}$ m
or $\nu_{0}=\frac{}{1 \pm|q|}$ which means that there are resonant
frequencies for and "infinite" number of rationals
\square Note that for even multi-poles and $q=1$ or $m=0$, there is a Fourier coefficient $\bar{b}_{n 0}$, which is independent of ϕ and represents the average value of the periodic perturbation

- The perturbing term in the r.h.s. is

$$
\bar{b}_{n 0} \bar{W}_{1} e^{i \nu_{0} \phi}=\nu_{0}^{2} \beta^{\frac{n}{2}+1} b_{n 0}\binom{n-1}{\frac{n}{2}-1} W_{1}^{n-1} W_{-1}^{\frac{n}{2}-1} e^{i \nu_{0} \phi}
$$

which can be obtained for $k=\frac{n}{2}-1$ (it is indeed an integer only for even multi-poles)

- Following the approach of the perturbed non-linear harmonic oscillator, this term will be secular unless a perturbation in the frequency is considered, thereby resulting to a tune-shift equal to
$\delta \nu=-\frac{\nu_{0} \beta^{\frac{n}{2}+1} b_{n 0}}{2}\binom{n-1}{\frac{n}{2}-1} \widetilde{W}^{n-2}$ with $\quad \widetilde{W}^{2}=W_{1} W_{-1}$
■ This tune-shift is amplitude dependent for $n>2$

Magnetic multipole

■ From Gauss law of magnetostatics, a vector potential exist

$$
\nabla \cdot \mathbf{B}=0 \quad \rightarrow \quad \exists \mathbf{A}: \quad \mathbf{B}=\nabla \times \mathbf{A}
$$

- Assuming transverse 2D field, vector potential has only one component A_{s}. The Ampere's law in vacuum (inside the beam pipe) $\nabla \times \mathbf{B}=0 \rightarrow \exists V: \quad \mathbf{B}=-\nabla V$
- Using the previous equations, the relations between field components and potentials are

$$
B_{x}=-\frac{\partial V}{\partial x}=\frac{\partial A_{s}}{\partial y}, \quad B_{y}=-\frac{\partial V}{\partial y}=-\frac{\partial A_{s}}{\partial x}
$$

i.e. Riemann conditions of an analytic function

Exists complex potential of $z=x+i y \quad$ with power series expansion convergent in a circle with radius $|z|=r_{c}$ (distance from iron yoke)

$$
\mathcal{A}(x+i y)=A_{s}(x, y)+i V(x, y)=\sum_{n=1}^{\infty} \kappa_{n} z^{n}=\sum_{n=1}^{\infty}\left(\lambda_{n}+i \mu_{n}\right)(x+i y)^{n}
$$

- From the complex potential we can derive the fields $B_{y}+i B_{x}=-\frac{\partial}{\partial x}\left(A_{s}(x, y)+i V(x, y)\right)=-\sum_{n=1}^{\infty} n\left(\lambda_{n}+i \mu_{n}\right)(x+i y)^{n-1}$

■ Setting $b_{n}=-n \lambda_{n}, \quad a_{n}=n \mu_{n}$

$$
B_{y}+i B_{x}=\sum_{n=1}\left(b_{n}-i a_{n}\right)(x+i y)^{n-1}
$$

■ Define normalized coefficients

$$
b_{n}^{\prime}=\frac{b_{n}}{10^{-4} B_{0}} r_{0}^{n-1}, a_{n}^{\prime}=\frac{a_{n}}{10^{-4} B_{0}} r_{0}^{n-1}
$$

on a reference radius $r_{0}, 10^{-4}$ of the main field to get

$$
B_{y}+i B_{x}=10^{-4} B_{0} \sum_{n=1}^{\infty}\left(b_{n}^{\prime}-i a_{n}^{\prime}\right)\left(\frac{x+i y}{r_{0}}\right)^{n-1}
$$

■ Note: $n^{\prime}=n-1$ is the US convention

General multi-pole

■ Equations of motion including any multi-pole error term, in both planes

$$
\frac{d^{2} \mathcal{U}_{x}}{d \phi_{x}^{2}}+\nu_{0 x}^{2} \mathcal{U}_{x}=\overline{b_{n, r}}\left(\phi_{x}\right) \mathcal{U}_{x}^{n-1} \mathcal{U}_{y}^{r-1}
$$

\square Expanding perturbation coefficient in Fourier series and inserting the solution of the unperturbed system on the rhs gives the following series:

$$
\begin{aligned}
& \mathcal{U}_{x}^{n-1} \approx \mathcal{U}_{0 x}^{n-1}=\sum_{\substack{q_{x}=-n+1}}^{n-1} \bar{W}_{q_{x}} e^{i i_{x} \nu_{0} \phi_{x}} \\
& \mathcal{U}_{y}^{r-1} \approx \mathcal{U}_{0 y}^{r-1}=\sum_{q_{y}=-r+1}^{r-1} \bar{W}_{q_{y}} e^{i q_{y} \nu_{0 y} \phi_{x}} \\
& \text { ecomes }
\end{aligned}
$$

\square The equation of motion becomes

$$
\frac{d^{2} \mathcal{U}_{x}}{d \phi_{x}^{2}}+\nu_{0 x}^{2} \mathcal{U}_{x}=\sum_{m, q_{x}, q_{y}} \overline{b_{n r m}} W_{q_{x}}^{x} W_{q_{y}}^{y} e^{i\left(m+q_{x} \nu_{0 x}+q_{y} \nu_{0 y}\right) \phi_{x}}
$$

- In principle, same perturbation steps can be followed for getting an approximate solution in both planes
\square The general resonance conditions is $m+q_{x} \nu_{0 x}+q_{y} \nu_{0 y}=\nu_{0 x}$ or $m+q_{x}^{\prime} \nu_{0 x}+q_{y} \nu_{0 y}=0$, with order $\left|q_{x}\right|+\left|q_{y}\right|+1$
\square The same condition can be obtained in the vertical plane ■ For all the polynomial field terms of a $2 n$-pole, the main excited resonances satisfy the condition $q_{x}^{\prime}+q_{y}=n$ but there are also sub-resonances for which $q_{x}^{\prime}+q_{y}<n$
\square For normal (erect) multi-poles, the main resonances are $\left(q_{x}^{\prime}, q_{y}\right)=(n, 0),(n-2, \pm 2), \ldots$ whereas for skew multi-poles $\left.\stackrel{\left(q_{x}^{\prime}\right.}{\prime}, q_{y}\right)=(n-1, \pm 1),(n-3, \pm 3), \ldots$

■ If perturbation is large, all resonances can be potentially excited - The resonance conditions form lines in the frequency space and fill it up as the order grows (the rational numbers form a dense set inside the real numbers)

Systematic and random

\square If lattice is made out of N identical cells, and the perturbation follows the same periodicity, resulting in a reduction of the resonance conditions to the ones satisfying

$$
q_{x} \nu_{0 x}+q_{y} \nu_{0 y}=j N
$$

\square These are called systematic resonances

- Practically, any (linear) lattice perturbation breaks super-periodicity and any random resonance can be excited

■Careful choice of the working point is necessary

■ In the vicinity of a third order resonance, three fixed points can be found at

- For $\frac{\delta}{A_{3 p}}>0$ all three points are unstable
- Close to the elliptic one at $\psi_{20}=0$ the motion in phase space is described by circles that they get more and more distorted to end up in the "triangular" separatrix uniting the unstable fixed points
- The tune separation from the resonance (stop-band width) is $\delta=\frac{3 A_{3 p}}{2} J_{20}^{1 / 2}$

■ Regular motion near the center, with curves getting more deformed towards a rectangular shape

- The separatrix passes through 4 unstable fixed points, but motion seems well contained

■ Four stable fixed points exist and they are surrounded by
 stable motion (islands of stability)

Path to chaos

\square When perturbation becomes higher, motion around the separatrix becomes chaotic (producing tongues or splitting of the separatrix)
■ Unstable fixed points are indeed the source of chaos when a perturbation is added

Chaotic motion

■ Poincare-Birkhoff theorem states that under perturbation of a resonance only an even number of fixed points survives (half stable and the other half unstable)
■ Themselves get destroyed when perturbation gets higher, etc. (self-similar fixed points)
■ Resonance islands grow and resonances
 can overlap allowing diffusion of particles

Beam Dynamics: Dynamic Aperture

■ Dynamic aperture plots often show the maximum initial values of stable trajectories in $x-y$ coordinate space at a particular point in the lattice, for a range of energy errors.
\square The beam size (injected or equilibrium) can be shown on the same plot.
\square Generally, the goal is to allow some significant margin in the design the measured dynamic aperture is often significantly smaller than the predicted dynamic aperture.

- This is often useful for comparison, but is not a complete characterization of the dynamic aperture: a more thorough analysis is needed for full optimization.

OCS: Circular TME

TESLA: Dogbone TME

Example: The

- Dynamic aperture for lattice with specified misalignments, multipole errors, and wiggler nonlinearities
- Specification for the phase space distribution of the injected positron bunch is an amplitude of $\mathbf{A x}+\mathbf{A y}=0.07 \mathrm{~m}$ rad (normalized) and an energy spread of $\mathbf{E} / \mathbf{E} 0.75 \%$
- DA is larger then the specified beam acceptance

- Including radiation damping and excitation shows that 0.7% of the particles are lost during the damping Certain particles seem to damp away from the beam core, on resonance islands

■ Frequency Map Analysis (FMA) is a numerical method which springs from the studies of J. Laskar (Paris
Observatory) putting in evidence the chaotic motion in the Solar Systems
■ FMA was successively applied to several dynamical systems
\square Stability of Earth Obliquity and climate stabilization (Laskar, Robutel, 1993)
\square 4D maps (Laskar 1993)
\square Galactic Dynamics (Y.P and Laskar, 1996 and 1998)
\square Accelerator beam dynamics: lepton and hadron rings (Dumas, Laskar, 1993, Laskar, Robin, 1996, Y.P, 1999, Nadolski and Laskar 2001)

Motion on torus

■ Consider an integrable Hamiltonian system of the usual form

$$
H(\boldsymbol{J}, \boldsymbol{\varphi}, \theta)=H_{0}(\mathbf{J})
$$

■ Hamilton's equations give

$$
\begin{aligned}
& \dot{\phi}_{j}=\frac{\partial H_{0}(\mathbf{J})}{\partial J_{j}}=\omega_{j}(\mathbf{J}) \Rightarrow \phi_{j}=\omega_{j}(\mathbf{J}) t+\phi_{j 0} \\
& \dot{J}_{j}=-\frac{\partial H_{0}(\mathbf{J})}{\partial \phi_{j}}=0 \Rightarrow J_{j}=\text { const. }
\end{aligned}
$$

■ The actions define the surface of an invariant torus

- In complex coordinates the motion is described by

$$
\zeta_{j}(t)=J_{j}(0) e^{i \omega_{j} t}=z_{j 0} e^{i \omega_{j} t}
$$

$■$ For a non-degenerate system $\operatorname{det}\left|\frac{\partial \omega(J)}{\partial J}\right|=\operatorname{det}\left|\frac{\partial^{2} H_{0}(J)}{\partial J^{2}}\right| \neq 0$ there is a one-to-one correspondence between the actions and the frequency, a frequency map can be defined parameterizing the tori in the frequency space

$$
F: \quad(\mathbf{I}) \longrightarrow(\omega)
$$

Building the

\square When a quasi-periodic function $f(t)=q(t)+i p(t)$ in the complex domain is given numerically, it is possible to recover a quasi-periodic approximation

$$
f^{\prime}(t)=\sum_{k=1}^{N} a_{k}^{\prime} e^{i \omega_{k}^{\prime} t}
$$

in a very precise way over a finite time span $[-T, T]$ several orders of magnitude more precisely than simple Fourier techniques

- This approximation is provided by the Numerical Analysis of Fundamental Frequencies - NAFF algorithm
- The frequencies ω_{k}^{\prime} and complex amplitudes a_{k}^{\prime} are computed through an iterative scheme.

Aspects of the frequency map

■ In the vicinity of a resonance the system behaves like a pendulum

- Passing through the elliptic point for a fixed angle, a fixed frequency (or rotation number) is observed
- Passing through the hyperbolic point, a frequency jump is oberved

Building the frequency map

■ Choose coordinates (x_{i}, y_{i}) with p_{x} and $p_{y}=0$
■ Numerically integrate the phase trajectories through the lattice for sufficient number of turns
■ Compute through NAFF Q_{x} and Q_{y} after sufficient number of turns

- Plot them in the tune diagram

Frequency maps for the target error table (left) and an increased random skew octupole error in the super-conducting dipoles (right)

Diffusion Maps

- Calculate frequencies for two equal and successive time spans and compute frequency diffusion vector:

$$
\left.\boldsymbol{D}\right|_{t=\tau}=\left.\boldsymbol{\nu}\right|_{t \in(0, \tau / 2]}-\left.\boldsymbol{\nu}\right|_{t \in(\tau / 2, \tau]}
$$

- Plot the initial condition space color-coded with the norm of the diffusion vector
- Compute a diffusion quality factor by averaging all diffusion coefficients normalized with the initial conditions radius

$$
D_{Q F}=\left\langle\frac{|\boldsymbol{D}|}{\left(I_{x 0}^{2}+I_{y 0}^{2}\right)^{1 / 2}}\right\rangle_{R}
$$

Diffusion maps for the LHC

Diffusion maps for the target error table (left) and an increased random skew octupole error in the super-conducting dipoles (right)

- Non linear
$\begin{aligned} & \text { optimization based } \\ & \text { on phase advance }\end{aligned}\left|\sum_{p-0}^{N-1} e^{\left.e^{p\left(p_{1}, \mu_{x+}+n_{y}, x_{e x}\right.}\right)}\right|=\sqrt{\frac{1-\cos \left[N_{c}\left(n_{x} \mu_{x, c}+n_{y} \mu_{y, c}\right)\right]}{1-\cos \left(n_{x} \mu_{x, c}+n_{y} \mu_{y, c}\right)}}=0$ scan for minimization of resonance driving terms and tune-shift with amplitude

$$
\begin{aligned}
& \bigcap_{N_{c}\left(n_{x} \mu_{x, c}+n_{y} \mu_{y, c}\right)=2 k \pi}^{n_{x} \mu_{x, c}+n_{y} \mu_{y, c} \neq 2 k^{\prime} \pi}
\end{aligned}
$$

Dynamic aperture for

- Dynamic aperture and diffusion map
- Very comfortable DA especially in the vertical plane
\square Vertical beam size very small, to be reviewed especially for removing electron PDR
■ Need to include non-linear fields of magnets and wigglers

- Frequency maps enabled the comparison and steering of different lattice designs with respect to non-linear dynamics
\square Working point optimisation, on and off-momentum dynamics, effect of multi-pole errors in wigglers

Working point choice for SUPERB

- Figure of merit for choosing best working S. Liuzzo et al., IPAC 2012 point is sum of diffusion rates with a constant added for every lost particle
- Each point is produced after tracking 100 particles
- Nominal working point had to be moved towards "blue" area

$$
W P S=0.1 N_{l o s t}+\sum e^{D}
$$

D. Robin, C. Steier, J. Laskar, and L. Nadolski, PRL 2000

- Frequency analysis of turn-by-turn data of beam oscillations produced by a fast kicker magnet and recorded on a Beam Position Monitors

- Damping rings non-linear dynamics is dominated by very strong sextupoles used to correct chromaticity
■ Important effect of wiggler magnets
■ Dynamic aperture computation is essential for assuring good injection efficiency in the damping rings
■ Frequency map analysis is a very well adapted method for revealing global picture of resonance structure in tune space and enable detailed non-linear optimisation

