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Beam dynamics with 
radiation damping !
Yannis PAPAPHILIPPOU!

Accelerator and Beam Physics group!
Beams Department!

CERN"

Eighth International Accelerator School for Linear Colliders"
4-15 December 2013, Antalya!

Lecture A3a: Damping Rings
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2!

Outline!
n Radiation damping!

q  Synchrotron oscillations!
q  Betatron oscillations!
q  Robinson theorem!

n Radiation integrals!
n Quantum excitation!
n Equilibrium emittances!
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3!

Synchrotron Radiation and Radiation Damping!

n  Up to this point, the transport of a relativistic particle 
around a ring was treated as a conservative process !
n  The particle change of momentum (acceleration) 
results in emission of synchrotron radiation!
n  It turns out that this is much more important in 
circular then linear accelerators!
n  The emission of synchrotron radiation results in 
energy lost by the particle and the damping of 
oscillations, called radiation damping"
n  This energy lost is recovered by the RF accelerating 
cavities  in the longitudinal direction but not in the 
transverse 
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4!

Why circular machines?!

Larmor Power radiated by non-
relativistic particles is very small!

Power radiated by relativistic 
particle in linear accelerator  is 
negligible!

Power radiated by relativistic 
particle in circular accelerator is 
very strong (Liénard, 1898)!
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5!

Lienard’s Paper!

Prophetically published in 
the french journal “The 
Electric Light” 

n “Electric and 
Magnetic Field 
produced by an 
electric charge 
concentrated at a point 
and travelling on an 
arbitrary path”!
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6!

Why electrons?!
Power inversely proportional to 
4th power of rest mass (proton 
2000 times heavier than electron)!
On the other hand, for multi TeV 
hadron colliders (LHC) 
synchrotron radiation is an 
important issue (protection with 
absorbers)!

By integrating around one 
revolution, the energy loss per 
turn is obtained. For the ILC DR 
it is around 4.5 MeV/turn. On 
the other hand, for LEPII (120 
GeV) it was 6GeV/turn, i.e. 
circular electron machines of 100s 
of GeV become not very practical!
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7!

Synchrotron Radiation formulas for e-/e+!

n  The power radiated by relativistic electron can be rewritten as!

! ! ! !           with!

n  The energy loss per turn can be expressed as!

! !           with !                   the 2nd radiation integral !

n  For a lattice with uniform bending radius (iso-magnetic) this 
yields:!
!
!
n  If this energy were not recovered , particles would gradually 
spiral inward until lost on vacuum chamber wall!
n  RF cavities replace this lost energy by providing momentum 
kicks to the beam in the longitudinal direction!

P� =
cC�E4

2⇡⇢
=

e2c3

2⇡
C�E

2B2 C� = 8.85⇥ 10�5 m

(GeV)3

U0 =
C�E4

2⇡

I
ds

⇢2
=

C�E4

2⇡
I2I2 =

I
ds

⇢2

U0[keV ] = 88.5
E4

⇢

[GeV]4

[m]
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8!

Damping of synchrotron oscillations!
n Consider the differential equation of the energy for 

longitudinal motion ! ! ! !!

    with damping coefficient                  !!
!where     is the energy requirement per turn of the particle,  
and !      the revolution period and the synchrotron frequency!

n  The solution can be written as a damped oscillation in 
energy and time with respect to the ideal synchromous 
particle!

U
T0

ΔE t( ) = AEe−αst cos Ω t −ϕ s( )

τ t( ) = −αcAEE0Ω
e−αst sin Ω t −ϕ s( )

⌦

2
=

e↵c!RFV0 cos�s

ET0
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9!

Damping of synchrotron oscillations!
n Note that the synchrotron motion is damped towards the 

motion of the synchronous particle!
n The damping coefficient is dependent on the energy of the 

particle through the radiated power but also through the 
revolution period. In the following, we try to establish this 
relationship!

n A particle with energy spread follows a dispersive trajectory 
with dispersion D!

n The energy requirement per turn can be obtained by the 
integral of the radiated power in  one revolution!

n Differentiating with respect to the energy!
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10!

Damping of synchrotron oscillations II!
n Taking into account that the average energy spread around 

the ring should be zero the previous integral is written:!

n Setting ! ! !    and taking into account the!
!
!definition of the magnetic rigidity, the expression of the 
radiation power is written !

n Its derivative with respect to the energy gives!

!where we used the identity !

n Replacing in the integral at the top,!
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11!

Damping of synchrotron oscillations III!
n Replacing in the last integral the expression of the power!

!

!and taking into account that ! ! ! ! !!
!!
!the damping of synchrotron motion is written ! !!

!!
!with the damping partition number defined as!

n Entirely defined by the lattice!!
n Bending magnets and quads are usually separated and the 

damping partition number is usually extremely small!

=
I4
I2

=
U0

2ET0
Js
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12!

Damping of vertical oscillations!
n Synchrotron radiation emitted in the direction of motion of 

electron, whose momentum is reduced!
n This reduces the vertical component of the momentum but 

the angle remains the same!
!

n The key for betatron damping is the energy recovery by the 
RF cavities, as only the longitudinal momentum is restored!

n The change in energy will not affect the vertical position but 
the angle changes proportionally!

yʹ′

pinitial

s

py yʹ′

pinitial −
pγ

s

py −δ
py

γ	


y yδʹ′ ʹ′−

pinitial −
pγ

s

py −
pγ +δ

pRF
E 

RF Cavity
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13!

Damping of vertical oscillations II!
n Recall now solution of Hill’s equations in the vertical plane, 

assuming that the beta function is slowly varying (i.e. alpha 
function is zero), for simplicity!

n The betatron oscillation amplitude is!
n The change of the amplitude becomes!

n By averaging over all angles !

!and !
n Summing up the energy losses for a full turn!
n Thus, in one turn the amplitudes are damped with a constant!
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14!

Damping of vertical oscillations II!
n  The vertical betatron amplitude is thus exponentially 
decaying

n  Equivalently, the damping of  the vertical emittance is 
given by

n  This means that the vertical emittance in the 
absence of dispersion or coupling will be reduced to 
zero!

n Actually, due to radiation emission, the vertical 
oscillations are not reduced to zero!

n  This gives a “quantum limit”, beyond which the 
vertical emittance cannot be further reduced!

A(t) = A(0)e�↵yt

✏y = ✏y(0)e
�2↵yt
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15!

Damping of horizontal oscillations!
n The horizontal motion is described by !

n Energy change ! due to photon emission results in a change 
of the dispersive part but not of the total coordinates so that!

n The change of the Betatron amplitude!
!becomes!

n The energy loss in an element dl is written!

n Substituting to the change in amplitude and averaging over 
the angles (and some patience…)!
! ! !        and the damping coefficient !

u
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16!

Robinson theorem!
n Grouping the damping constants and introducing the three 

damping times and damping partition numbers!

!

n The Robinson theorem (1958) states that the sum of the 
damping partition number is an invariant!

n In storage ring with separated function magnets, !         and!

n The longitudinal damping occurs at twice the rate of the 
damping in the two transverse dimensions !



D
am

pi
ng

 ri
ng

s, 
Li

ne
ar

 C
ol

lid
er

 S
ch

oo
l 2

01
3!

17!

Transverse emittances!
n Radiation damping provides a direct mechanism to take hot 

injected beams and reduce the equilibrium parameters to a 
regime useful for high luminosity colliders and high 
brightness light sources.  !

n At the same time, the radiated power plays a dominant role 
in the design of the associated hardware and its protection!

n If the only effect was radiation damping, the transverse 
emittances would be damped to zero.!

n Photons are emitted in energy bursts in localized areas and 
horizontal betatron oscillations are excited as well (quantum 
fluctuations)!

n Vertical emittance can become very small and only excited by 
coupling with the horizontal or residual vertical dispersion!

n Electrons are influenced by this stochastic effect and 
eventually loose memory (unlike hadrons)!
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18!

Equilibrium Beam Properties!
n The emission of photons by the beam is a random 

process around the ring!
n Photons are emitted within a cone around the direction 

of the beam particle with a characteristic angle 1/γ !
n This quantized process excites oscillations in each 

dimension!

n  In the absence of resonance or collective effects, which 
also serve to heat the beam, the balance between 
quantum excitation and radiation damping results in the 
equilibrium beam properties that are characteristics of a 
given ring lattice!

E - ΔE

E

E - ΔE

E
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19!

Quantum Excitation - Longitudinal!
n  For the very short timescales corresponding to 
photon emission, we can take the equations of 
motion we previously obtained for synchrotron 
motion and write:!

!
where AE is a constant of the motion.!
n  The change in AE due to the emission of 
photons should be estimated!
n The emission of an individual photon will not 
affect the time variable, however, it will cause an 
instantaneous change in the value of ΔΕ!

ΔE 2 t( )+ E
2Ω2

αc
2
τ 2 t( ) = AE2
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20!

Quantum Excitation - Longitudinal!
n  From the solution of the synchrotron equation of motion, the 
energy difference is!
!

where u is the energy radiated at time t1.  Thus!

!
!
          and !

n  Considering the rate of photon emission N , the average 
change in synchrotron amplitude due to photon emission is!

δ(ΔΕ) = A0 cosΩ t − t0( )− uE cosΩ t − t1( ) = A1 cosΩ t − t1( )

A1
2 = A0

2 +
u
E

!

"
##

$

%
&&

2

−
2A0u
E

cosΩ t1 − t0( )

ΔA2 = A2 − A0
2 =

u2

E 2

22

0

d A u
dt E

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
N
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21!

Quantum Excitation - Longitudinal!
n  By including, the radiation damping term, the net 
change in the synchrotron amplitude can be written as:!

!
n  The equilibrium properties of a bunch are obtained 
when the rate of growth from quantum excitation and 
the rate of damping from radiation damping are equal!
n   For an ensemble of particles where the RMS energy 
amplitude is represented by the RMS energy spread, the 
equilibrium condition are written as!

d A2

dt
= −2αE A

2 +N u2

E 2

σδ
2 =

σ E

E

!

"
##

$

%
&&

2

=
A2

2
=

N u2
s

4αEE
2
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22!

Photon Emission!
n The term              is the ring-wide average of the 

photon emission rate, N, times the mean square 
energy loss associated with each emission!

   where n(u) is the photon emission rate at energy u, !

!
    with C is the ring circumference.  !
n The derivation of the photon spectrum emitted in a 

magnetic field is quite lengthy and we just quote the 
result!

2

s
uN

( )2 2

0 0
( )n u du u u n u du

∞ ∞
= =∫ ∫    and      N N

N u2
s
=
1
C

N u2 ds∫

N u2 = 2Cqγ
2 E Pγ
ρ

     where     Cq =
55
32 3


mc

= 3.84×10−13m
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23!

Energy Spread and Bunch Length!
n  Integrating around the ring then yields the RMS beam 

energy spread!

n  Using this expression with the synchrotron equations of 
motion, the bunch length is related to the energy spread by!

! ! ! ! !, with the harmonic number !

!
n  The bunch length scales inversely with the square root of 

the RF voltage.!

σδ
2 =

σ E

E

!

"
##

$

%
&&

2

=Cqγ
2 I3
JsI2

  = Cqγ
2 I3
2I2 + I4

     where     I3 =
ds

ρ
3∫

�z = ��

s
↵cC2�mc2

2⇡heV0| cos�s|
h =

fRFC

c
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24!

Quantum excitation - horizontal!

and 

photon emission 

n Assume electron along nominal momentum orbit with 
initially negligible emittance!

n After photon emission with momentum Δp, electron’s 
momentum becomes p0-Δp and the trajectory becomes!
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25!

Dispersion emittance!
n Recall that the emittance of the betatron ellipse in 

phase space is!
!

n Taking into account the change of the position and 
angle due to the photon emission, the change of the 
emittance is!

   !
with the “dispersion” emittance (or curly H-function)!

εx = γ s( ) x2 s( )+ 2α s( ) x s( ) !x s( )+β s( ) !x 2 s( )

δεx = γD2 + 2αD !D +β !D 2( ) δ pp
"

#
$

%

&
'

2

=H s( ) δ pp
"

#
$

%

&
'

2
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26!

Horizontal equilibrium emittance!
n Averaging over all photon energies and emission probabilities, 

the equilibrium emittance is derived as!

! ! ! ! !     ! !       ,  with!

n For isomagnetic ring with separated function magnets the 
equilibrium emittance is written!

!

n The integral depends on the optics functions on the bends!
n It gets small for small horizontal beta and dispersion, but this 

necessitates strong quadrupoles !
n Smaller bending angle and lower energy reduce equilibrium 

emittance!

=
C

q

�2

J
x

I5
I2
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27!

Quantum Excitation - Vertical!
n  In the vertical dimension, assuming an ideal ring with 
no vertical dispersion, the quantum excitation of the 
emittance is determined by the opening angle of the 
emitted photons. The resulting perturbation to the 
vertical motion can be described as:!
!
!
and the effect to the emittance is !

n  Averaging over all photon energies and emission 
probabilities, the quantum limit of the vertical 
emittance is derived as!

!
!

δ y = 0          δ !y = Δp
p
θγ

δε y =
Δp
p
θγ

"

#
$

%

&
'

2

β y

ε y ≈
Cq
2J y I2

β y
ρ3∫ ds
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28!

Vertical Emittance & Emittance Coupling!
n  For typical storage ring parameters, the vertical emittance 
due to quantum excitation is very small  !
n  Assuming a typical βy values of a few 10’s of meters and 
bending radius of ~100m, the quantum limit is εy ~ 0.1 pm.  !
n The observed sources of vertical emittance are:!

q emittance coupling whose source is ring errors which 
couple the vertical and horizontal betatron motion!

q vertical dispersion due to vertical misalignment of the 
quadrupoles and sextupoles and angular errors in the 
dipoles!

n  The vertical and horizontal emittances in the presence of a 
collection of such errors around a storage ring is commonly 
described as:!

ε0 is the horizontal equilibrium emittance.!

0 0
1; 0 1

1 1y x
κ

ε ε ε ε κ
κ κ

= = < <
+ +

      for  
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29!

Radiation integrals!

Equilibrium 
energy spread!

Equilibrium betatron emittance!

    Damping partition numbers!

Energy loss per turn!

Momentum compaction factor!


