- First step, try to make BPMB IQy signals zero. From http://atf.kek.jp/twiki/bin/view/ATFlogbook/Log20131217o it happened at
Mover $1 \quad 5.974 \mathrm{~V}$
Mover 25.954 V
Mover 3 5.947 V
- 51 bunches were acquired at this point, the following are the IQy signals.
10 db att. and -10 db gain in amplifiers (not sure)
BPMA signals might be saturated

- Next step, try to make BPMA IQy signals zero by movers
- Movers were moved up $34 \mu \mathrm{~m}$ (1.1V less each mover) to find BPMB I_{y} signal zero. It was made on steps of $\sim \pm 3 \mu \mathrm{~m}(0.1 \mathrm{~V})$
- Movers 1,2 and 3 were moved in different scales to achieve rotation. Steps of $\sim \pm 0.1 \mathrm{mrad}(-0.32 \mathrm{~V}$ on $\mathrm{M} 1,2$ and 0.1 V on M 3)
- From
http://atf.kek.jp/twiki/bin/view/ATFlogbook/Log20131217o
it happened at
Mover 1 -0.072 V
Mover $2-0.057 \mathrm{~V}$
Mover $3 \quad 6.429 \mathrm{~V}$
- 51 bunches were acquired at this point, the following are the IQy signals
10 db att. and -10 db gain in amplifiers (not sure)
BPMB signals might be saturated

- Averaging movers $\mathrm{M} 1,2$, and including M 3 in the equation $\theta_{p}=1.03 \mathrm{mrad}\left(M_{3}-M_{1,2}\right)$.
Where:
$M_{i}=\left(3-V_{i}\right) / 4$
$1.03 \mathrm{mrad}=125 \mu \mathrm{~m} / 121.6 \mathrm{~mm}$
$=\left(\right.$ half movers range/distance between $M_{1,2}$ and $\left.M_{3}\right)$ It is possible to obtain initial and final angles
- Initial angle $\theta_{p}=-0.01 \mathrm{mrad}$

Final angle $\theta_{p}=1.6 \mathrm{mrad}$

