Alignment and Adjustment of IPBPMs in the IP chamber

Oscar BLANCO^{1,2} part of LAL group and Siwon YANG group

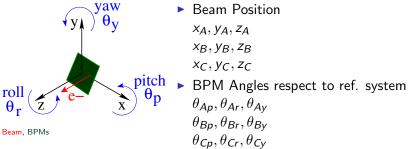
LAL¹, CERN²

February 13, 2014

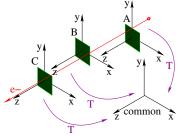
Table of contents

BPM system

Block AB

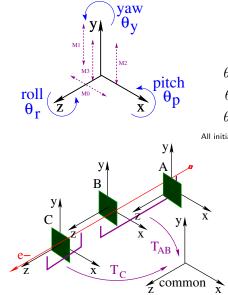

Alignment Adjustment

Conclusions Conclusions Open Questions



Coordinate system

Each BPM has its own coordinates with respect to a reference system centered electrically and aligned with the beam


All systems relate to a common mechanical reference system, no rotations, just translations

One of the BPMs reference system could be chosen to coincide with the common

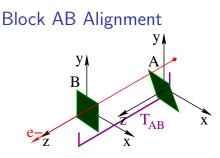
Movers

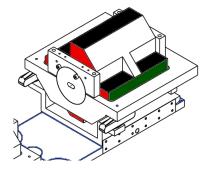
There is a set of movers to control BPM position

$$x = x_0 + f_x(M_0)$$

$$y = y_0 + f_y(M_1, M_2, M_3)$$

$$z = z_0$$

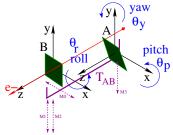

$$\theta_p = \theta_{p0} + f_p(M_1, M_2, M_3)$$


$$\theta_r = \theta_{r0}$$

$$\theta_y = \theta_{y0}$$

All initial values are set during the IP BPMs installation

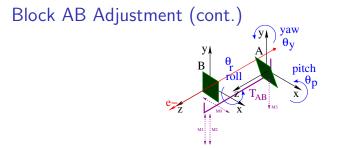
Ideally all x_0, y_0 are equal when movers at mid-range, z_0 is the BPM center and all angles are zero. System is composed only for **two** independent blocks (AB,C)



Using BPMB as reference, $1000\beta_{\rm y}$ optics

	Beam		Mech
	В	А	A
$x_0 [\mu m]$	0±5	53 ± 5	42 ± 50
<i>y</i> ₀ [µm]	0 ± 3	-34 ± 3	-83 ± 66
<i>z</i> ₀ [mm]	not meas.	not meas.	not meas.
θ_{p0} [mrad]	0 ± 0.1	1.6 ± 0.1	1.6 ± 1.0
θ_{r0} [mrad]	not meas.	not meas.	-0.7 ± 0.9
θ_{y0} [mrad]	not meas.	not meas.	$\pm 0.9 \mp 1.1$

Block AB Adjustment



Using BPMB as reference, $1000\beta_y$ optics

	Adjustment (if BPM B is reference and centered)		
	В	A	
x [μm]	$0 + 125M_0$	$53 + 125M_0$	
<i>y</i> [μm]	$0 + 94.8M_{1,2} + 30.2M_3$	$-34 + 11.2M_{1,2} + 113.8M_3$	
<i>z</i> [mm]	not meas.	not meas.	
θ_p [mrad]	$0 + 1.03(M_3 - M_{1,2})$	$1.6 + 1.03(M_3 - M_{1,2})$	
θ_r [mrad]	not meas.	-0.7	
θ_y [mrad]	not meas.	± 0.9	

 $-1 < M_{0,1,2,3} < 1, \Delta M_{0,1,2,3} \ge 1.25 \times 10^{-2}$

- 32

Using BPMB as reference, $1000\beta_V$ optics

	Adjustment (if BPM B is reference and centered)		
	В	A	
<i>у</i> [µm]	$0 + 94.8M_{1,2} + 30.2M_3$	$-34 + 11.2M_{1,2} + 113.8M_3$	
$\theta_p \text{ [mrad]}$	$0 + 1.03(M_3 - M_{1,2})$	$1.6 + 1.03(M_3 - M_{1,2})$	

POSSIBLE CORRECTIONS

V: $y_B = 0\mu m$, $\theta_{Bp} = 0$ mrad, $y_A = -34\mu m$, $\theta_{Bp} = 1.6$ mrad $y_B = 0\mu m$, $\theta_{Bp} = 0.4$ mrad, $y_A = 0\mu m$, $\theta_{Bp} = 2.0$ mrad $y_B = 0\mu m$, $\theta_{Bp} = -0.8$ mrad, $y_A = -64.9\mu m$, $\theta_{Bp} = 0.8$ mrad $y_B = 21.9\mu m$, $\theta_{Bp} = -1.6$ mrad, $y_A = -107.64\mu m$, $\theta_{Bp} = 0$ mrad

Block AB Adjustment (cont.)

	Adjustment (BPMB as reference to BPMA)		
	B	A	
x [µm]	$x_{B0} + 125M_0$	$x_{A0} - x_{B0} + 125M_0$	
y [μm]	$y_{B0} + 94.8M_{1,2} + 30.2M_3$	$y_{A0} - y_{B0} + 11.2M_{1,2} + 113.8M_3$	
<i>z</i> [mm]	z _{B0}	$z_{A0} - z_{B0}$	
θ_p [mrad]	$\theta_{Bp0} + 1.03(M_3 - M_{1,2})$	$\theta_{Ap0} - \theta_{Bp0} + 1.03(M_3 - M_{1,2})$	
θ_r [mrad]	θ_{Br0}	$ heta_{Ar0} - heta_{Br0}$	
θ_y [mrad]	θ_{By0}	$ heta_{Ay0} - heta_{By0}$	

 $-1 < M_{0,1,2,3} < 1, \Delta M_{0,1,2,3} \ge 1.25 \times 10^{-2}$

POSSIBLE CORRECTIONS

- H: B $\pm 125\mu$ m, or, A $\pm 125\mu$ m
- V: B $\pm 125 \mu$ m, or, A $\pm 125 \mu$ m
 - B \pm 90 μ m and \mp 1mrad, or, A \pm 110 μ m and \pm 1mrad
 - B \mp 2mrad, or, A \pm 2mrad

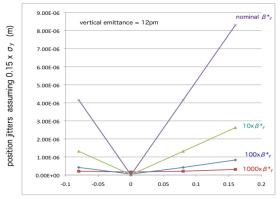
NOTE: Angle correction goes in opposite directions

Block AB Adjustment (cont.)

$$\begin{array}{c|c} \theta_r \text{ [mrad]} & \theta_{Br0} & \theta_{Ar0} - \theta_{Br0} \\ \hline \text{Coupling depends on } \theta_r. \end{array}$$

Conclusions

- Block AB mechanical alignment shows relative good agreement with measurements made on Dec. 2013.
- Movers adjustment is explicitly writen in order to clarify movers capabilities.
- If pitch angle of 2mrad is acceptable, then BLOCK AB is OK.
 Otherwise movers could minimize signals I_y, Q_y on either A or B but not all at same time.


I THANK YOU ALL!

Open Questions

Required alignment precision (x₀, y₀, z₀, θ_{p0}, θ_{r0}, θ_{y0}) in order to check during munufacturing and assembly.
 What to check? How to check?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Support slides

distance from IP (m)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ