Alignment and Adjustment of IPBPMs in the IP

 chamberOscar BLANCO ${ }^{1,2}$
part of
LAL group
and
Siwon YANG group

LAL $^{1},{ }^{1}$ CERN ${ }^{2}$
February 13, 2014

Table of contents

BPM system

Block AB

Alignment
Adjustment

Conclusions
Conclusions
Open Questions

Coordinate system

Each BPM has its own coordinates with respect to a reference system centered electrically and aligned with the beam

Beam, BPMs

- Beam Position

$$
x_{A}, y_{A}, z_{A}
$$

$$
x_{B}, y_{B}, z_{B}
$$

$$
x_{C}, y_{C}, z_{C}
$$

- BPM Angles respect to ref. system
$\theta_{A p}, \theta_{A r}, \theta_{A y}$
$\theta_{B p}, \theta_{B r}, \theta_{B y}$
$\theta_{C p}, \theta_{C r}, \theta_{C y}$
All systems relate to a common mechanical reference system, no rotations, just translations

Movers

There is a set of movers to control BPM position

All initial values are set during the IP BPMs installation

Ideally all x_{0}, y_{0} are equal when movers at mid-range, z_{0} is the BPM center and all angles are zero.
System is composed only for two independent blocks (AB,C)

Block AB Alignment

Using BPMB as reference, $1000 \beta_{y}$ optics

	Beam		Mech
	B	A	A
$x_{0}[\mu \mathrm{~m}]$	0 ± 5	53 ± 5	42 ± 50
$y_{0}[\mu \mathrm{~m}]$	0 ± 3	$-\mathbf{3 4} \pm \mathbf{3}$	-83 ± 66
$z_{0}[\mathrm{~mm}]$	not meas.	not meas.	not meas.
$\theta_{p 0}[\mathrm{mrad}]$	0 ± 0.1	$\mathbf{1 . 6} \pm \mathbf{0 . 1}$	1.6 ± 1.0
$\theta_{r 0}[\mathrm{mrad}]$	not meas.	not meas.	-0.7 ± 0.9
$\theta_{y 0}[\mathrm{mrad}]$	not meas.	not meas.	$\pm 0.9 \mp 1.1$

Block AB Adjustment

Using BPMB as reference, $1000 \beta_{y}$ optics

	Adjustment (if BPM B is reference and centered)	
	B	A
$x[\mu \mathrm{~m}]$	$0+125 M_{0}$	$53+125 M_{0}$
$y[\mu \mathrm{~m}]$	$0+94.8 M_{1,2}+30.2 M_{3}$	$-34+11.2 M_{1,2}+113.8 M_{3}$
$z[\mathrm{~mm}]$	not meas.	not meas.
$\theta_{p}[\mathrm{mrad}]$	$0+1.03\left(M_{3}-M_{1,2}\right)$	$1.6+1.03\left(M_{3}-M_{1,2}\right)$
$\theta_{r}[\mathrm{mrad}]$	not meas.	-0.7
$\theta_{y}[\mathrm{mrad}]$	not meas.	± 0.9
$-1<M_{0,1,2,3}<1, \Delta M_{0,1,2,3} \geq 1.25 \times 10^{-2}$		

Block AB Adjustment (cont.)

Using BPMB as reference, $1000 \beta_{y}$ optics

	Adjustment (if BPM B is reference and centered)	
	B	A
$y[\mu \mathrm{~m}]$	$0+94.8 M_{1,2}+30.2 M_{3}$	$-34+11.2 M_{1,2}+113.8 M_{3}$
$\theta_{p}[\mathrm{mrad}]$	$0+1.03\left(M_{3}-M_{1,2}\right)$	$1.6+1.03\left(M_{3}-M_{1,2}\right)$

POSSIBLE CORRECTIONS

$\mathrm{V}: y_{B}=0 \mu \mathrm{~m}, \theta_{B p}=\mathbf{0 m r a d}$,
$y_{A}=-34 \mu \mathrm{~m}, \theta_{B p}=1.6 \mathrm{mrad}$ $y_{B}=\mathbf{0} \boldsymbol{\mu} \mathbf{m}, \theta_{B p}=0.4 \mathrm{mrad}, \quad y_{A}=\mathbf{0} \boldsymbol{\mu} \mathbf{m}, \theta_{B p}=2.0 \mathrm{mrad}$ $y_{B}=0 \mu \mathrm{~m}, \theta_{B p}=-\mathbf{0 . 8 m r a d}, \quad y_{A}=-64.9 \mu \mathrm{~m}, \theta_{B p}=\mathbf{0 . 8 m r a d}$ $y_{B}=21.9 \mu \mathrm{~m}, \theta_{B p}=-1.6 \mathrm{mrad}, y_{A}=-107.64 \mu \mathrm{~m}, \theta_{B p_{\equiv}}=\mathbf{0 m r a d}$

Block AB Adjustment (cont.)

	Adjustment (BPMB as reference to BPMA)	
	B	A
$x[\mu \mathrm{~m}]$	$x_{B 0}+125 M_{0}$	$x_{A 0}-x_{B 0}+125 M_{0}$
$y[\mu \mathrm{~m}]$	$y_{B 0}+94.8 M_{1,2}+30.2 M_{3}$	$y_{A 0}-y_{B 0}+11.2 M_{1,2}+113.8 M_{3}$
$z[\mathrm{~mm}]$	$z_{B 0}$	$z_{A 0}-z_{B 0}$
θ_{p} [mrad]	$\theta_{B p 0}+1.03\left(M_{3}-M_{1,2}\right)$	$\theta_{A p 0}-\theta_{B p 0}+1.03\left(M_{3}-M_{1,2}\right)$
θ_{r} [mrad]	$\theta_{\text {Br0 }}$	$\theta_{\text {Ar0 }}-\theta_{\text {Br0 }}$
θ_{y} [mrad]	$\theta_{B y 0}$	$\theta_{A y 0}-\theta_{B y 0}$
$-1<M_{0,1,2,3}<1, \Delta M_{0,1,2,3} \geq 1.25 \times 10^{-2}$		
POSSIBLE CORRECTIONS		
H:	$\mathrm{B} \pm 125 \mu \mathrm{~m}$, or, $\mathrm{A} \pm 125 \mu \mathrm{~m}$	
V :	B $\pm 125 \mu \mathrm{~m}$, or, $\mathrm{A} \pm 125 \mu \mathrm{~m}$	
	$\mathrm{B} \pm 90 \mu \mathrm{~m}$ and $\mp 1 \mathrm{mrad}$, or, $\mathrm{A} \pm 110 \mu \mathrm{~m}$ and $\pm 1 \mathrm{mrad}$	
	B $\mp 2 \mathrm{mrad}$, or, $A \pm 2 \mathrm{mrad}$	

NOTE: Angle correction goes in opposite directions

Block AB Adjustment (cont.)

$$
\begin{aligned}
& \begin{array}{|c||c|c|}
\hline y[\mu \mathrm{~m}] & y_{B 0}+94.8 M_{1,2}+30.2 M_{3} & y_{A 0}-y_{B 0}+11.2 M_{1,2}+113.8 M_{3} \\
\theta_{p}[\mathrm{mrad}] & \theta_{B p 0}+1.03\left(M_{3}-M_{1,2}\right) & \theta_{A p 0}-\theta_{B p 0}+1.03\left(M_{3}-M_{1,2}\right) \\
\hline
\end{array} \\
& \text { Vertical signals } I_{y}, Q_{y} \text { depend on } y, \theta_{p} \text {, it might be possible to find a } \\
& \text { minimum for } \sqrt{\left(I_{y}^{2}+Q_{y}^{2}\right)} \text { for } A \text { and } B \text { at the same time. }
\end{aligned}
$$

$x[\mu \mathrm{~m}]$	$x_{B 0}+125 M_{0}$	$x_{A 0}-x_{B 0}+125 M_{0}$
$\theta_{y}[\mathrm{mrad}]$	$\theta_{B y 0}$	$\theta_{A y 0}-\theta_{B y 0}$

Horizontal signals I_{x}, Q_{x} depend on x, θ_{y}.

$$
\begin{array}{|c|||c|c|}
\hline \theta_{r}[\mathrm{mrad}] & \theta_{B r 0} & \theta_{A r 0}-\theta_{B r 0} \\
\hline \text { Coupling depends on } \theta_{r} .
\end{array}
$$

Conclusions

- Block $A B$ mechanical alignment shows relative good agreement with measurements made on Dec. 2013.
- Movers adjustment is explicitly writen in order to clarify movers capabilities.
- If pitch angle of 2 mrad is acceptable, then BLOCK AB is OK. Otherwise movers could minimize signals I_{y}, Q_{y} on either A or B but not all at same time.

Open Questions

- Required alignment precision $\left(x_{0}, y_{0}, z_{0}, \theta_{p 0}, \theta_{r 0}, \theta_{y 0}\right)$ in order to check during munufacturing and assembly. What to check? How to check?

Support slides

