

# Optics corrections in the ATF damping ring

Jürgen Pfingstner, Yves Renier

# Introduction and method

#### **Motivation**

- Errors due to beta functions due the field errors result in beta beating.
- This deviation from the perfect beta function can lead to:
  - Problems at injection and extraction (matching and losses).
  - Blow up of the extracted emittance.
- The vertical emittance in a damping ring is mainly determined by the coupling between horizontal and vertical plane.
- Coupling correction is important to lower the vertical emittance.

Therefore: Beta function and coupling correction can lower especially the vertical emittance!

In this work we try to correct the beta function first.



#### Measurement of tune and beta functions with NAF

#### **Turn-by-turn measurement**

#### 1.Tune measurement

- FFT of injection oscillations
- Optimised FFT used (SUSSIX/ NAF)
- Info about form of spectrum (spikes) is included in estimation

#### 2. Beta function

- Relative beta functions can be inferred from relative amplitude of BPM data.
- Absolute scale, by normalising size to model beta functions

#### **Principle: Interpolated FFT**



#### Beta function correction

- Trim correctors on quadrupoles are used to change optics.
- 2. Change of beta and tune for unit chance is recorded (R measurement).
- 3. Calculate corrector changes  $\Delta c$  so that target beta function is created. Therefor solve:

$$\begin{bmatrix} Q_{x} - \overline{Q_{x}} \\ Q_{y} - \overline{Q_{y}} \\ \beta_{x} - \overline{\beta_{x}} \\ \beta_{y} - \overline{\beta_{y}} \end{bmatrix} = \begin{bmatrix} R_{Qx} \\ R_{Qy} \\ R_{\beta x} \\ R_{\beta y} \end{bmatrix} \Delta c$$

 Additionally weights are used for different compoents (degrees of freedom)

# Results in June

## Beta function measurement at XSR location



- Calculate the emittance in the ring from beta function and beam size measurement at XSR monitor location
- Extracted emittance has not been measured

|                                         | before corr | after corr 1 | after corr 2                                |
|-----------------------------------------|-------------|--------------|---------------------------------------------|
| $\sigma_y(XSR) [\mu m]$                 | 10          | 5.3          | 3.9                                         |
| $\beta_y(XSR)$ [m]                      | 2.73        | 1.85         | 2.34                                        |
| $\epsilon_y$ [pm]                       | 37          | 15           | 6.5                                         |
| charge10 <sup>9</sup> [e <sup>-</sup> ] | 6           | 6            | 6 = + • · • · • · • · • · • · • · • · • · • |

# Results in November

#### Problem with certain BPMs

- Due to the varying measurement results in certain BPMs, the raw data were plotted
- There was a problem in BPMs 13, 22, 41, 42, 47, 77, 87, 88



# Improvements of Software robustness

#### **Problems with response matrix measurement:**

- Try to measure the response matrix of the beta function and tune due to change of trim coils of all 99 quadrupoles
- Beam was lost several times, which caused warnings/errors in measurement program
- After 2 1/2 hours (of 3 hours) measurement program crashed
- Correction could not be applied

#### Improvements in Software (error handling):

- In case too many BPMs are noisy in one run (e.g. beam loss): user is asked if measurement should be repeated
- If the specified current values for the trim coils are out of bound they are automatically limited.
- After each corrector, results are stored so that the measurement can be resumed at any time.
- Still want to implement that if too much current is lost in the DR during the measurement the step size is automatically reduced.

#### Correction of the beta functions

- With improvements R measurement worked.
- Now all correctors and BPMs that have been detected to have problems at one measurement are not used for the correction

#### Correction:

- During the first correction attempt, the beam was lost.
- The main cause was that the tune was strongly changed by the corrector changes
- After putting a higher weight on the tune, the beam current in the DR stayed mainly the same and beta functions were corrected (see next slide)
- Emittance was not reduced and stayed around 13pm
- The correction was not very stable and dependent on the actual BPM measurement



#### Beta function before correction



- Measured optics functions (red) fitted quite well with the model (blue)
- Emittance was 13.3 pm



## Beta function after correction



- Good correction in x, but not much change in y
- Emittance was 12.8 pm



# **Conclusions**

- Got started with the use of the software
- Some changes to make the scripts more robust have been implemented
- The response matrix was measured
- The corrections corrected the beta function, but could not lower the emittance below 13pm

## **Future work**

- Still some open degrees of freedom in the scaling (x vs. y)
- Some ideas how the correction could be made more robust (matrix conditioning)
- Include coupling correction
- Graphical interface
- Beta function measurement function is already regularly used by operators

Thank you for your attention!