

Beam Halo Studies

S. Liu, S. Bai, F. Bogard, P. Bambade, J-N Cayla, A. Faus-Golfe, I. Khvastunov, H.Monard, C. Sylvia, N. Fuster Martinez, J. Resta, D. Wang

Contents

- Introduction
- Halo Measurement Using Wire Scanners @ATF2
- Preparation of diamond sensor for PHIL & ATF2
- Summary and Future Plan

Introduction

Motivations:

- ▶ Beam halo transverse distribution unknown → investigate halo model
- ➤ Probe Compton recoiled electron→ investigate the higher order contributions to the Compton process (in the future)

Halo Measurement Using Wire Scanners

Wire Scanners

Beam Halo Measurement

Halo Density

 $\rho_{h1} = 2.2 \times 10^9 \times x^{-3.5} \qquad \text{(horizontal and vertical until 6 } \sigma\text{)}$ $\rho_{h2} = 3.7 \times 10^8 \times x^{-2.5} \qquad \text{(vertical outside 6 } \sigma\text{)}$

x-> the distance from the beam center as a unit of σ

T. Suehara et al., "Design of a Nanometer Beam Size Monitor for ATF2", arXiv:0810.5467v

Energy spread of halo = ? Unknown;

- First beam halo measurements were done in 2005 using the wire scanners in the old extraction line -> need to be confirmed in the present ATF2 beam line;
- No energy halo measurement was performed before -> Energy spread of halo is unknown -> can be investigated by measuring halo distribution at the location of large dispersion (at extraction line and at B-Dump bending magnet).

Wire Scanner Structure

- (1) 50W_Y
- (2) 50W_U
- (3) 50W_X
- (4) 10W_-10°
- (5) 10W_+10°
- (6) 10W_Y
- (7) 10W_U
- (8) 7C_Y

Distance between the center of the wires: 10mm (10/v2 mm in beam direction)

Possibility for Halo Measurement

- For MW2X we used 10 µm tungsten wire for Y and 50 µm tungsten wire for X; For Post-IP wire scanner we used 50 µm tungsten wires for both X and Y.
- If we take the middle point between two peaks, then the maximum distance between two measurements using different wires is 5/√2 mm, which correspond to the following σ:

	Υ-	Y +	X-	X+
MW2X	-154σ _y	154σ _γ	-41σ _x	41σ _x
Post-IP wire scanner	-30σ _y *	$11\sigma_{y}$	-14σ _x	14σ _x

^{*} There is no other wires on the left side of the first wire used for Y scan.

Wire Scanners & Detectors

Detector

MW3X -> horizontal

MW1X-(Post-IP) -> edge of cut on vertical halo

Data Analysis Process

[?] Baseline for 1000V seems to be electronic noise (not reliable) -> Background @ 1000V under PMT sensitivity ?

Comparison with data taken in 2005

$$\rho_{halo} = 1.02 * 10^9 * z^{-3.5} (3 < z < 6)$$

$$\rho_{halo} = 1.70 * 10^8 * z^{-2.5} (z > 6)$$

-> Calculated value: parameterization of beam halo (initially done by Suerara-san and modified by Dou)

Preparation of diamond sensor for PHIL & ATF2

IUI PHIL & ALFA

Diamond Detector Characteristics

Property D	iamond Silic	con
Density (g m ⁻³)	3.5	2.32
Band gap (eV)	5.5	1.1
Resistivity (Ω cm)	>1012	10 ⁵
Breakdown voltage (V cm ⁻¹)	10 ⁷	10 ³
Electron mobility (cm ³ V ⁻¹ s ⁻¹)	1900	1500
Hole mobility (cm ³ V ⁻¹ s ⁻¹)	2300	500
Saturation velocity (µm ns ⁻¹)	141 (e ⁻)	100
	96(hole)	
Dielectric constant	5.6	11.7
Neutron		
transmutation cross-section(mb)	3.2	80
Energy per e-h pair (eV)	13	3.6
Atomic number	6	14
Av.min.ionizing signal per 100 µm (e	3600	8000

ADVANTAGES

- Large band-gap ⇒ low leakage current
- High breakdown field
- High mobility⇒fast charge collection
- Large thermal conductivity
- High binding energy⇒Radiation hardness

Energy loss of an electron in diamond & silicon

	Kinetic Energy	Collision Stp. Pow.	Me)//om	Radiative Stp. Pow.	Mo\//om	Total Stp. Pow.	Ma\//om
	MeV	MeV cm2/g	MeV/cm	MeV cm2/g	MeV/cm	MeV cm2/g	MeV/cm
PHIL →	3.00E+000	1.59E+000	5.60E+000	3.56E-002	1.25E-001	1.63E+000	5.73E+000
ATF2 →	1.30E+003	2.09E+000	7.36E+000	2.96E+001	1.04E+002	3.17E+001	1.11E+002

Diamond Detector Characteristics

High voltage side readout

. . . .

Diamond detectors:

- Pads : mm² x 500 μm

GEOMETRIES

- Strips & pixels
- Membranes (\rightarrow 5 μ m)

Diamond type:

- Poly crystalline diamond
- Single crystalline diamond

Low voltage side readout

Charge created by 1MIP in diamond → 2.74 fC

Current Measurement

Diamond Detector Test @ PHIL

Test of fast remote readout (amplifier or attenuator +fast heliax coax cable) with particles at end of beam line, using existing single crystal 4.5x4.5mm CVD diamond pad sensor

PHIL Electron Beam Parameters

√ Charge: 1pC-500 pC/bunch (1)

bunch per RF pulse);

✓ Duration of Charge: 7 ps FWHM;

✓ Charge Stablility: < 2%;</p>

√ Beam Energy: 3 to 5MeV;

✓ Minimum Dispersion: < 1%;
</p>

In-vacuum single crystal CVD diamond sensor with 4 strips (identical setups as for ATF2) -> test and diagnostic for PHIL

Experimental Setup @ PHIL

50 m HELIAX 1/2 coax cable+ 50 m HELIAX 1/4 coax cable

Collimator: R=1mm

Minimum Signal Detection

Signal Form for Different Beam Charge

Without box and with 24dB attenuator and 2mm collimator, distance to exit is ≈4.5cm

Beam Size Measurement

Diamond size: 4.5X4.5 mm

 $\sigma_{\rm m}^2 - (4.5/\sqrt{12})^2 = \sigma_{\rm beam}^2$

 σ_{m} : measured beam size (fitted by gaussian)

 σ_{heam} : horizontal beam size

 $\sigma_{\text{beam}} = 3.7 \text{ mm}$

YAG screen measured beam size: 2.2 mm

 σ_{beam} =2.17 mm

YAG screen measured beam size :1.67mm

Linearity of Output Charge

Saturation of Output Amplitude

Amplitude VS particle number

Expected Signal Range @ ATF2

	Total #	Max. #/mm² @ Sensor	Charge signal/mm ²
Beam	10 ¹⁰	6.16*10 ⁷	1.6887μC
Halo (δp/p ₀ =0.01)	10 ⁷	1.14 *10 ⁴	31.236pC
Halo (δp/p ₀ =0.0008)	10 ⁷	2.24*104	61.376pC
Compton	28340	5.2*10 ²	1.4284pC

Tested signal ranged @ PHIL with 4.5X4.5mm² diamond pad -> 11fC (with 40dB amplifier) to 1µC (with 12dB attenuator)

New design with 4 strips for diamond detector in vacuum

Design for Diamond Detector in Vacuum

Same "plug compatible" design for PHIL and ATF2: fabrication will be completed in April 2014 before testing in May-June at PHIL.

Summary and Future Plan

- Halo measurement at diagnostic section (extraction line) using MW2X wire scanner require <u>careful procedures for the data taking and analysis to combine data with sufficient dynamic range</u>; Measurements were done up to $\pm 15\sigma_x$ and the results in 3σ to 6σ range fit reasonably with parameterizations determined using data taken in 2005, however <u>beyond 6σ the beam halo is covered by background;</u>
- Diamond detector will be installed after the B-Dump bending magnet to investigate the beam halo propagating mode;
- We have successfully detected a minimum signal of <u>1 electron by using 40dB amplifier</u> and a maximum signal of <u>10⁸ electrons by using 24dB attenuator</u>.
- Diamond detector tests @ PHIL show good linearity in output charge in <u>the range</u> from 10⁶ to 10⁸ particles -> more tests are planned for larger range;
- Fabrication of diamond detector for vacuum <u>will be completed in April 2014 before</u> <u>testing in May-June at PHIL and installation at ATF2.</u>

Thank you for your attention!

mank you for your attention!

Backup Slides

Backup Slides

Halo Distribution at Post-IP

Edge of cutting almost at the same position $-> -14\sigma$

Beam Center Moved from 10mm to 6mm

→ Not able to see the edge on the left side again

Signal Level Without beam

- By connecting the ADC with the PMT, we measured the signal level with data acquisition software → should be 0 without beam and without background?
- Signal level for MW2X: -1.4 (average)

Gate Width and Signal Pulse

Effect of Beam Pipe Movement on Beam Halo

Effect of Beam Pipe Movement on Background

Energy Halo Measurement Using MW2X

<u>Dependence of Background on HV</u>

Charge vs HV ←

Data taken on Agilent Scope

→ Amplitude vs HV

Measurement Procedure

R=1mm collimator (L=4mm)

- Put the diamond detector at 4.5mm far away from the exit
- Scan the beam without collimator to measure the beam size
 - -> for the calculation of # e⁻ hit on the diamond
- Add R=1mm collimator and steering the beam to the center of diamond
- Measure the beam charge at exit using ICT(from 1pC to 270pC)
- Read the signal strength (amplitude and area) using Agilent scope

Noise Analysis

CIVIDEC 40dB amplifier

	Miteq@CR	Cividec@CR	Miteq@PHIL	Cividec@PHIL
Noise Mean	-1	-0.9	-0.6	1.8
Value, mV				
Noise RMS,	0.51	0.38	0.88	0.86
mV				
Collected	10.6	9.6	17.6	19.1
charge, fC				
Signal Am-	20	14	16	18
plitude, mV				
S/N ratio	41.2	39.2	18.8	18.8

MITEQ 20dB+20dB amplifier