Status and Prospects of the EXTRACTION beam line

Edu Marin on behalf of ATF2 Tuning team

17th ATF2 Project Meeting

February 12th, 2014

Tuning Extraction Line	Observed Issues	Final Focus	Summary
Outline			
Outime			

- Dispersion
- Coupling
- Matching

2 Observed Issues

- KICKER
- OTRs

3 Final Focus

- FF Matching
- β* Measurement

4 Summary

Observed Issues

Final Focus

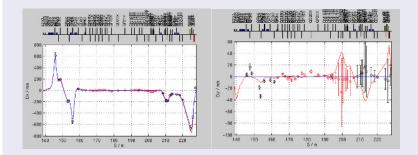
Summary

Tuning Extraction Line

Tuning Extraction Line	Observed Issues	Final Focus	Summary
EXT Tuning Procedure	9		

Tuning procedure of the Extraction Line

- Dispersion Correction
 - Try to reduce η to the lowest value as possible (<5mm)
- Coupling Correction
- β-Matching


The procedure is iterated until convergence is achieved

Bmag=1.0 ϵ_y =12 pm

Tuning Extraction Line ●○○○○	Observed Issues	Final Focus	Summary
Dispersion			
Dispersion correct	ion		

\sum -Knob

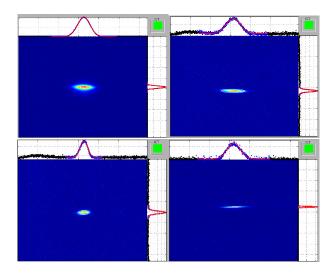
Dispersion corrected by means of the sum knob (Strength of QSs are varied the same amount)

Measurement taken during owl shift January 21st

Tuning Extraction Line ○●○○○	Observed Issues	Final Focus	Summary
Coupling			
Coupling Correction			

OTRs cables

We have replaced the OTR cables the by a better shielded cables (\downarrow background and better triggering).


Camera Tilt Calibration

Since coupling corrected is based on zeroing the tilt at the OTR cameras, we must correct for tilted cameras. OTR0X and OTR2X a significant tilt was observed:

After manually correcting for the measured tilt, all cameras are align within <0.2 deg

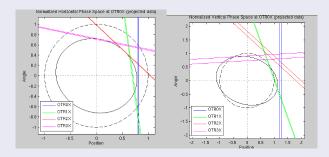
Tuning Extraction Line	Observed Issues	Final Focus	Summary
Coupling			
Coupling Correction			

Notice lower intensity in OTR3X...

Tuning Extraction Line	Observed Issues	Final Focus	Summary
Matching			
Emittance Panel			

Beta Matching

We used EXT line quadrupoles from QF1X to QD10X to match:


- Twiss parameters (Bmag=1.0)
- Dispersion

58 (500 / Citabra Bee 	-
C13 GY2 (N) Const C2 Demose C2 C2 Demose	·
Nocitetistra-citea Pro- Baye Senses Stat Am- Units West	

Tuning Extraction Line ○○○○●	Observed Issues	Final Focus	Summary
Matching			
Emittance Calcula	tion		

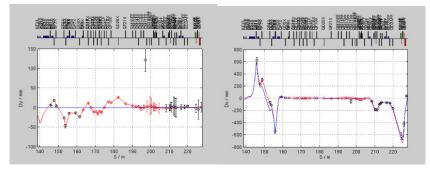
Final Emittance

Example of measurement on January 22^{*nd*}. After applying the tuning procedure, we obtained:

*ϵ*_{*x*}=1.1nm (Bmag=1.00)

 ϵ_{γ} =12pm (Bmag=1.0)

Observed Issues


Final Focus

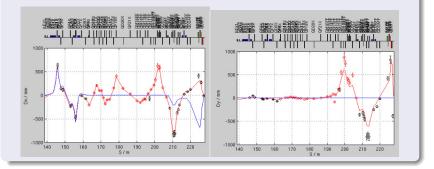
Summary

Observed Issues

Tuning Extraction Line	Observed Issues ●000000	Final Focus	Summary
KICKER			
Dispersion correc	tion		

Could not correct $\eta < 10$ mm at the OTRs by scanning the sum knob, orbit bumps at kicker or BS3... Measurement taken during swing shift January 28th

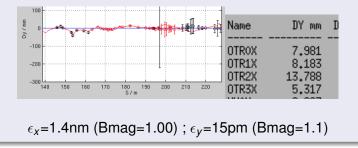
 ϵ_x =1.6 nm (Bmag=1.02) ; ϵ_y =23 pm (Bmag=1.06)


Incoming dispersion from DR has changed.

Tuning Extraction Line	Observed Issues o●ooooo	Final Focus	Summary
KICKER			

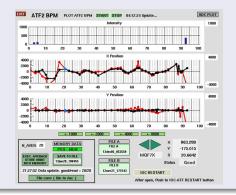
Dispersion without correction

Incoming Dispersion from DR

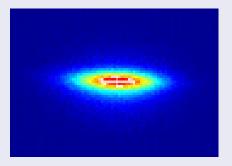

Dispersion at the extraction line with QSs and [QF1X:QF10X] at the nominal values *Measurement taken during swing shift January 28*th

Tuning Extraction Line	Observed Issues	Final Focus	Summary
KICKEB			

After correcting DR dispersion


After changing the DR (x,y)-orbit around kicker by local bumps which features lower dispersion but larger emittance. We had a better correction of dispersion at the EXT line. *Measurement taken during day shift January 29th*

Tuning Extraction Line	Observed Issues	Final Focus	Summary
KICKER			
Timing Dependence			


Orbit Variation

Kicker timing is changed for switching between 1/2-Train. Initial orbit cannot be recovered with the initial timing. Different timing kicker is set to bring back the orbit.

Tuning Extraction Line	Observed Issues ○○○○●○○	Final Focus	Summary
OTRs			
OTR0X Intensity			

OTR0X has a larger signal to noise ratio compare to others

Gaussian fit is very sensitive to the S/N ratio cut

Tuning Extraction Line	Observed Issues	Final Focus	Summary
OTRs			
OTR3X Intensity			

OTR3X has always show a lower signal to noise ratio. Tried solutions: Background subtraction, optics re-alignment, swap optics, replace cameras...

We found on last day run that target was not well align with the OTR window. It has been realigned, to be confirmed in next run...

Tuning Extraction Line	Observed Issues ○○○○○○●	Final Focus	Summary
OTRs			
Intrinsic Emittance			

Measurement to evaluate the intrinsic emittance.

- we scanned all 4 skew quadrupoles QK1X, QK2X, QK3X and QK4X at a time over their power supply ranges.
- At each current value, dispersion and projected emittance were measured.
- Preliminary analysis of the data done by Mark Woodley are unclear.

Developing an algorithm to digitally determine σ_{13} and conduct a 4-D parameter fit.

Observed Issues

Final Focus

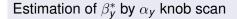
Summary

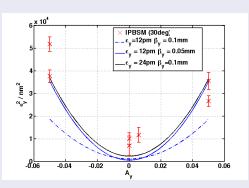
Final Focus

Tuning Extraction Line	Observed Issues	Final Focus ●○	Summary
FF Matching			
EE Motobing			

Matching Goals

viaicining


We tested a script meant to match the IP Twiss parameters given: Twiss parameters measured at OTR0X or at IP. The code optimizes QD18X, QF19X, QD20X, QF21X and the 6-matching quadrupoles of the FF to constraint:


• $\beta_{x,y}^* = 4 \text{ cm}, 0.1 \text{ mm}$	• $\Delta \phi_x^{MFB1-IP} = n \frac{\pi}{2}$
• $\alpha^*_{x,y} = 0, 0$	• $\Delta \phi_y^{MFB2-IP} = n \frac{\pi}{2}$
• $\alpha_y^{MFB2FF} = 0$	• $\Delta \phi_x^{ZH1FF-IP} = n\frac{\pi}{2}$
• $\alpha_x^{MFB1FF}=0$	• $\Delta \phi_y^{ZV1FF-IP} = n\frac{\pi}{2}$

The algorithm has been tested \rightarrow jitter reduction at MFB2FF from 12 μ m to 3 μ m.

Unfortunately we could not measured the IP Twiss functions

Tuning Extraction Line	Observed Issues	Final Focus ○●	Summary
β^* Measurement			
IP Twiss measure	ment		

Two different combinations of $\beta_y^* - \epsilon_y$ explain the measurement: $\beta_y^* = 0.1$ mm, $\epsilon_y = 24$ pm or $\beta_y^* = 0.05$ mm, $\epsilon_y = 12$ pm

Observed Issues

Final Focus

Summary

Summary

Tuning Extraction Line	Observed Issues	Final Focus	Summary
Summary and Outlook	(

Summary

- New algorithm to beta match the Twiss parameters out of DR
- All the necessary tools for dispersion, coupling correction and matching the extraction line are in good shape.
- Intensity issues observed at OTR0X and OTR3X have been addressed

Outlook

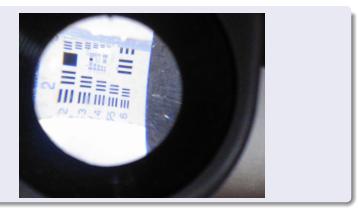
- Design a new holder that integrates the target and calibration device
- Evaluate intrinsic emittance
- Match the FF


Observed Issues

Final Focus


Summary

Thank you for your attention!!


Tuning Extraction Line	Observed Issues	Final Focus	Summary
Back Up Slides			

Tuning Extraction Line	Observed Issues	Final Focus	Summary
Back Up Slides			
	i constante a constante		

Tuning Extraction Line	Observed Issues	Final Focus	Summary
Back Up Slides			

Tuning Extraction Line	Observed Issues	Final Focus	Summary
Back Up Slides			

