Motivation	Considered Solutions	Magnet designs	ADDITIONAL ADVANTAGES	Summary and Outlo

Proposal: Two octupoles and QD0 for the ultra-low beta* optics

Edu Marin¹, M. Modena², M. Patecki², Rogelio Tom*á*s²

> ¹SLAC, (USA) ²CERN, (SWITZERLAND)

February 13rd 2014 ATF2 TB/SGC Meeting

Motivation	Considered Solutions	Magnet designs	ADDITIONAL ADVANTAGES	Summary and Outlook
Outline				

Motivation

- 2 Considered Solutions
 - QD0FF Replacement
 - Octupoles Insertion
- 3 Magnet designs
 - QD0FF Magnet
 - Octupole Magnet

4 ADDITIONAL ADVANTAGES

- Tuning
- Fringe Fields

Motivation	Considered Solutions	Magnet designs	ADDITIONAL ADVANTAGES	Summary and Outlook

Ultra-low β^* Optics

Project	Status	Energy [GeV]	$\gamma\epsilon_y$ [nm]	σ_y^* [nm]	eta_y^* [mm]	L* [m]	ξy
	Desimad	40.0	0000	50	0.1	0.4	4000
FFIB	Designed	46.6	2000	52	0.1	0.4	4000
FFTB	Measured	46.6	2000	70	-	0.4	-
ATF2 Nominal	Designed	1.3	30	37	0.1	1.0	10000
ILC	Designed	250	35	5.9	0.48	3.5	7500
ATF2 Ultra-low β^*	Proposed	1.3	30	23	0.025	1.0	40000
CLIC L*= 3.5 m	Designed	1500	20	1	0.069	3.5	50000

Exploration of ultra-low β^* optics is of common interest for future e^+e^- LC.

ATF2 σ_{γ}^{*} values are calculated assuming error-free lattices.

Motivation	Considered Solutions	Magnet designs	ADDITIONAL ADVANTAGES	Summary and Outlook

Impact of Magnetic errors

Negligible effect for the Nominal lattice. 35% $\Delta \sigma_{v}^{*}$ for the Ultra-low β^{*} lattice.

Project	Magnetic Errors	β_x^*	σ_{x}^{*}	$\beta_{\mathbf{v}}^{*}$	σ_{v}^{*}
		[mm]	[µm]	[µm]	[nḿ]
ATF2 Nominal	OFF	4	3.2	100	37
ATF2 Nominal	ON	4	3.2	100	38
ATF2 $10\beta_x^*1\beta_y^*$	ON	40	9.0	100	37
ATF2 Ultra-low β^*	OFF	4	3.2	25	23
ATF2 Ultra-low β^*	ON	4	3.2	25	31
ATF2 10 $\beta_x^* \frac{1}{4} \beta_y^*$	ON	40	9.0	25	22

Presently ATF2 is running with a modified optics in order to:

- Iower the backgrounds at the IP
- minimise the potential impact of the magnetic errors

Chromatic Skew Octupole Aberration

Motivation	Considered Solutions	Magnet designs	ADDITIONAL ADVANTAGES	Summary and Outloo

CONSIDERED SOLUTIONS

Motivation	Considered Solutions ●○○○	Magnet designs	ADDITIONAL ADVANTAGES	Summary and Outlook
ODOEE Boolo	comont			

QD0 Field quality

Relative tolerances at R = 0.01 cm for the multipole content of QD0FF. Each tolerance represents a $\Delta \sigma_v^* = 2\%$.

QD0FF		Normal $[10^{-4}]$				
		6-pole	8-pole	10-pole	12-pole	
	Tol.	0.2	1.8	3.1	15.0	
	Meas.	1.8	0.4	2.9	3.5	
	PM	-1.8	-0.3	-0.5	1.2	
			Skew	/ [10 ⁻⁴]		
QD0FF		4-pole	6-pole	10-pole	12-pole	
	Tol.	0.2	0.8	0.6	9.0	
	Meas.	1.8	0.3	0.3	0.2	
	PM	0.2	0.1	-0.1	-0.2	

The obtained IP spot sizes are:

 $\sigma_{\rm X}^* = 3.3 \ \mu {
m m}$ $\sigma_{\rm Y}^* = 27 \ {
m nm}$

QD0FF is a partial contributor to the observed $\Delta \sigma_{v}^{*}$.

Motivation	Considered Solutions	Magnet designs	ADDITIONAL ADVANTAGES	Summary and Outlook
Octupoles Insert	ion			

Octupoles Insertion

We have inserted 2 octupoles of 10 cm (magnetic length) separated by a phase advanced of π .

Option A: OCT2FF located in between of QD4BFF and QD4AFF (0.4 m). OCT1FF located in between of SD0FF and QD0FF (0.3 m) Option B: OCT2FF located in between of QD6FF and SK3FF (1.0 m). OCT1FF located right before SK1FF (3.8 m).

Motivation	Considered Solutions	Magnet designs	ADDITIONAL ADVANTAGES	Summary and Outlook
Octupoles Ins	ertion			
ATF2 F	FS Beam line			

Upstream of SK1FF Downstream of QD6FF

Motivation	Considered Se ○○○●	olutions Magnet designs	ADDITIONAL ADVANTAGES	Summary and Outl
Octupoles Ins	sertion			
Hig	gh Order M	Iultipoles Optimis	sation	
The	Simplex algori	thm has been used to op	timise	
9	Octupole ma	agnets		
9	Octupole Til	ts		
9	Normal sext	upole magnets		
9	Skew sextup	ole magnets		
Obta Opti Opti	ained normalis on-A: on-B:	ed strength for the OCTs $K_{(OCT1FF)} = 1238 m^{-4}$ $Tilt_{(OCT1FF)} = -1.6 deg$ $K_{(OCT1FF)} = 1526 m^{-4}$ $Tilt_{(OCT1FF)} = -2.0 deg$	are: $K_{(OCT2FF)} = -359 \ m^{-4}$ $Tilt_{(OCT2FF)} = -0.9 \ deg$ $K_{(OCT2FF)} = -567 \ m^{-4}$ $Tilt_{(OCT2FF)} = -1.5 \ deg$	
The Opti Opti	obtained IP sp on-A: on-B:	bot sizes are: $\sigma_x^* = 3.3 \ \mu \text{m}$ $\sigma_x^* = 3.4 \ \mu \text{m}$	σ_y^* = 22 nm σ_y^* = 21 nm	

Motivation	Considered Solutions	Magnet designs	ADDITIONAL ADVANTAGES	Summary and Out

look

MAGNET DESIGNS

Figure 1: Preliminary layout of the quadrupole magnet, arrows indicate the direction of magnetization of the permanent magnet blocks.

^a for further details: M. Modena, *Magnet Studies*, CLIC Workshop 2014.

NAC	STIN	otic	h n
IVIC	אווע	auc	ווע

ADDITIONAL ADVANTAGES

Octupole Magnet

Octupole Specifications

Adopted OCTFF design: Electromagnetic ^a.

Parameter	Unit	Value
Nominal Gradient	Tm-3	8565
Required tunability	%	-75, +20
Integrated gradient	T/m-2	560
Aperture radius	mm	50
Iron length	m	0.100
Magnetic length	m	0.106
Coil number of turns		61
Conductor size	mm x mm	5 x 5
Ampere-turns	A	1200
Current	A	19.7
Resistance (per coil)	mΩ	14
Conductor length (per coil)	m	19.9
Conductor mass (per coil)	kg	4.5
Yoke mass	kg	56
Total mass	kg	92

^a for further details: M. Modena, *Magnet Studies*

Motivation	Considered Solutions	Magnet designs	ADDITIONAL ADVANTAGES	Summary and Outlook
		00000		

Octupole Magnet

Octupole Field Quality (Option-A)

Relative tolerances at R = 0.02 cm for the multipole content of the octupole magnets. Each tolerance represents a $\Delta \sigma_y^* = 2\%$.

OCT1FF	Normal [10 ⁰]					
	4-pole	6-pole	10-pole	12-pole		
	0.001	0.013	0.4	1.7		
OCT1FF		Skew [10 ⁰]				
	4-pole	6-pole	10-pole	12-pole		
	0.001	0.007	0.2	0.7		
OCT2FF	Normal [10 ⁰]					
	4-pole	6-pole	10-pole	12-pole		
	0.002	0.01	1.5	2.4		
OCT2FF	Skew [10 ⁰]					
	4-pole	6-pole	10-pole	12-pole		
	0.0006	0.008	0.9	4.8		

4-pole and 6-pole errors could be compensated by re-matching quads and optimising sexts.

10-pole and 12-pole tolerances should be easily achievable.

Motivation	Considered Solutions	Magnet designs	ADDITIONAL ADVANTAGES	Summary and Outloc
Octupole Magne	ət			

QD0FF Magnet

Preliminary design

- two halves of yokes
- big aperture
 - avoid low saturation
 - ease the assembling
 - field quality
- coils optimised for low current density

Motivation	Considered Solutions	Magnet designs ○○○○●	ADDITIONAL ADVANTAGES	Summary and Outlook	
Octupole Magnet					
QD0FF Magnet					

Field Quality

Obtained field quality in units of 10^{-4} at a radius of 20 mm for the permitted harmonics (12-pole, 20-pole, 28-pole and 36-pole).

The field quality is less than 10^{-4} at a radius of 20 mm.

Motivation	Considered Solutions	Magnet designs	ADDITIONAL ADVANTAGES	Summary a

nd Outlook

ADDITIONAL ADVANTAGES

Motivation	Considered Solutions	Magnet designs	ADDITIONAL ADVANTAGES	Summary and Outlook
Tuning				

Tuning Study (Option-A)

Error Conditions

The tuning study considers 100 machines with different initial error conditions.

Errors are randomly assigned following a Gaussian distribution.

Error	Unit	$\sigma_{\rm error}$
Horizontal misalignment	[µm]	100
Vertical misalignment	[µm]	100
Tilt along <i>s</i> -coordinate	[µm]	300
Strength	[%]	0.1
IP measurement	[%]	10
Magnetic errors		ON

Motivation	Considered Solutions	Magnet designs	ADDITIONAL ADVANTAGES ○●○○	Summary and Outlook
Tuning				
Tuning	Results II			

Knobs

With linear knobs only 33% of machines reach a $\sigma_v^* \leq 1.2 \sigma_{v,0}^*$.

4,x,x,U ،,x,y,å*U_{y,x,y,å} .8*U_{y,x,x,}8

order

y,p_xp ۷.У.

y,x,x,y *U_{y,x,x} Č č

> _{۷,δ,δ}*T_{γ,δ,δ} •Т_{у,х,р,} .ő*Т_{У.У.У}

Residual IP aberrations:

18

16

14 Δσ_y* [nm]

12

10

8

6

',p_{x'},y*T_{y,px,y} .,х,Т_{у,х,з} ۲_{۷،۷},۳

, T_{y.x.p}

2 order knobs: 75 $\mathsf{T}_{y,p_x,y},\,\mathsf{T}_{y,x,p_y},$ 60 Counts $\mathsf{T}_{\mathbf{V},\delta,\delta}, \mathsf{T}_{\mathbf{V},\mathbf{X},\mathbf{X}}$ 45 30 3 order knobs: 15 $U_{V,X,X,X}, U_{V,X,\delta,\delta}.$

Potential benefits for tuning the $10\beta_x^*$ and Nominal lattice!

Motivation	Considered Solutions	Magnet designs	ADDITIONAL ADVANTAGES	Summary and Outlook
Tuning				
Tuning	Results II			

High Order Knobs

Taking advantage of the skew sextupole and octupole magnets new knobs are obtained.

Linear knobs: 33% of machines reach a $\sigma_y^* \le 1.2\sigma_{y,0}^*$. Linear + *T*-knobs: 54% of machines reach a $\sigma_y^* \le 1.2\sigma_{y,0}^*$. Linear + *T*+U-knobs: 63% of machines reach a $\sigma_y^* \le 1.2\sigma_{y,0}^*$.

^a more details: TUPBA25, Proceedings of PAC2013, Pasadena, (USA)

Magnet designs

ADDITIONAL ADVANTAGES

Summary and Outlook

Fringe Fields

Fringe Fields Compensation

Recent studies on the effect of fringe fields of the FD^{*a*} have shown $\Delta \sigma_y^*$ for the ATF2 ultra-low β^* lattice. Assuming an error-free lattice:

^a more details: M. Patecki, *Effects of quadrupolar fringe fields in Final Focus System*, CLIC Workshop 2014.

Motivation	Considered Solutions	Magnet designs	ADDITIONAL ADVANTAGES	Summary and Outlook

Summary and Outlook

Summary

- The insertion of 2 octupole magnets permits to achieve smaller σ^{*}_y than by replacing QD0FF
 - Permit the exploration of higher chromaticity lattices at ATF2.
 - Better tuning results
 - Fringe fields effects are mitigated
- ATF2 provides the possibility to assess the effect of field errors in FFS.
- Preliminary design of the octupole meet the requirements.

Outlook

- Continue on the design of the octupole magnet
- Design of the supports and movers.

Motivation

Considered Solutions

Magnet designs

ADDITIONAL ADVANTAGES

Summary and Outlook

Thank you for your attention!!

