Development of a combined TR/DR emittance station for future linear colliders such as CLIC or ILC at ATF2

R. Ainsworth¹, A. Aryshev², <u>T. Aumeyr¹</u>, L.M. Bobb^{1,3}, B. Bolzon^{3,4,5}, E. Bravin³, P. Karataev¹, K. Kruchinin¹, T. Lefevre³, S. Mazzoni³, M. Shevelev², N. Terunuma^{2,} J. Urakawa²

- 1. John Adams Institute at Royal Holloway, Egham, Surrey, UK
- 2. KEK, Ibaraki, Japan
- 3. CERN European Organisation for Nuclear Research, Geneva, Switzerland
- 4. Cockcroft Institute, Worrington, Cheshire, UK
- 5. University of Liverpool, Liverpool, Merseyside, UK

Evolution of technology

- [1] E. Chiadroni, et al., Proc. of PACO7, Albuquerque, NM, USA, FRPMN027.
- [2] A.H. Lumpkin, et al., Phys. Rev. ST Accel. Beams 10, 022802 (2007).
- [3] P. Karataev, et al., Phys. Rev. Lett. 93, 244802 (2004)

Transition Radiation

- Transition radiation (TR) appears when a charged particle crosses a boundary between two media with different dielectric constants.
- The resolution is determined by the source dimensions induced by a single particle plus distortion caused by the optical system (diffraction of OTR tails)

OTR monitor at the ATF2 Extraction Line (former LW system)

Experimental Setup

OTR screen

 $0.3 \times 30 \times 30$ mm aluminized silicon

- Lens "CVI Laser Optics" cemented achromat, f=120mm, ø=30mm
- CCD Camera SBIG-ST8300M with 5.4 μ m pixel size, 3352×2532 pixel array and ~50% quantum efficiency

OTR Image and Projections

- H size: Gaussian fit
- V size: PSF-like fit function
- Achieved with self-calibration procedure → Rob Ainsworth's talk

Achievement 2013 – quadrupole scan

Minimum measured beam size was: $0.754\pm0.034~\mu m$

Diffraction Radiation

DR Angular distribution

Principle:

- Electron bunch moves through a high precision co-planar slit in a conducting screen (Si + Al coating).
- 2. Electric field of the electron bunch polarizes atoms of the screen surface.
- 3. DR is emitted in two directions:
 - along the particle trajectory "Forward Diffraction Radiation" (FDR)
 - In the direction of specular reflection "Backward Diffraction Radiation" (BDR)

Impact parameter:

$$h \leq \frac{\gamma \lambda}{2\pi}$$

Generally:

DR intensity 1 as slit size U

Vertical Beam Size Measurement using the Optical Diffraction Radiation (ODR) model + Projected Vertical Polarisation Component (PVPC)

P. Karataev et al.

PRL 93, 244802 (2004)

PHYSICAL REVIEW LETTERS

week ending 10 DECEMBER 2004

Vertical polarisation component of 3-dimensional $(\theta_x, \theta_y, \theta_y)$ Intensity) DR angular distribution.

PVPC is obtained by integrating over θ_x to collect more photons.

Visibility (I_{min}/I_{max}) of the PVPC is sensitive to vertical beam size σ_v .

Beam size measurements using ODR

Beam size (µm)

Beam size measured with wire scanner (µm)

ODR experiment at CesrTA

Project aim:

To design and test an instrument to measure on the micron-scale the transverse (vertical) beam size for the Compact Linear Collider (CLIC) using incoherent Diffraction Radiation (DR) at UV/soft X-ray wavelengths.

Cornell Electron Storage Ring Test Accelerator (CesrTA) beam parameters:

	E (GeV)	σ _н (μm)	σ _v (μm)
CesrTA	2.1	320	~9.2
	5.3	2500	~65

D. Rubin et al., "CesrTA Layout and Optics", Proc. of PAC2009, Vancouver, Canada, WE6PFP103, p. 2751.

http://www.cs.cornell.edu

Simulating DR from a single electron – real lens

ODR angular distribution is very sensitive to distances away from the focal plane. The detector must therefore be exactly in the back focal plane.

Vacuum chamber assembly

- LHS: CHESS operation
- RHS: DR experiment
- Optical system connected to DR viewport

- Gate valve to disconnect CESR vacuum for target changeover
- Target mechanism: rotation + translation IN/OUT

LHS = Left Hand Side RHS = Right Hand Side

L3 layout @CesrTA

DR experiment

Technical drawings by N. Chritin

Optical System

 $\frac{g^2/}{2\rho}$ given γ and λ:

	2.1 GeV	5 GeV
200 nm	0.54 m	3.18 m
400 nm	1.08 m	6.37 m

 Compact optical system is in the prewave zone therefore a biconvex lens is used with detector in back focal plane to obtain the angular distribution.

(Pre-wave zone effect in transition and diffraction radiation: Problems and Solutions -P. V. Karataev).

Target

Chemical etching:

Silicon wafers are dipped into etchant (e.g. acidic mixture)

Molecular adhesion:

Two substrates with perfectly flat surfaces (e.g. polished mirror surfaces) adhere to one another, without adhesive (e.g. glue)

Mask

- Silicon Carbide
- Laser machining
- Not etched (orientated perpendicular to beam)

OTR/ODR emittance station – proposed time table

- Keep OTR/LW location:
 - Beam optics verified and well understood
 - Beam size, flexibility and tunability known
 - Transversal beam size resolution still not good enough → replace existing vacuum chamber
- Attach currently used BPM to new chamber
- Schedule:
 - 0.5 years: simulation of the current system (capabilities, possible improvements) → potential experimental tests
 - 1 year: Design and simulation of new system. Installation: 09/2015 (till the end of the summer 2015 shutdown)
 - 1.5 years: Experimental tests from 10/2015 till 06/2017 (~ 2 operational years).

Shift request

Year 1:

- 5 shifts: Commissioning and observation of OTR/ODR angular distributions (initial tests < 400 nm)
- 5 shifts: Resolution optimisation of the OTR/ODR and demonstration of high-resolution beam size measurements
- 5 shifts: Beam dynamics studies (incl. quad scan and beam roll angle)

Year 2:

- During Year 1: analysis of the experimental conditions and design short wavelength measurement system (< 200 nm)
- Summer 2016 shutdown: upgrade of optical system
- Year 2 → demonstrate performance of short wavelength measurement. Repeat the measurements performed in the optical wavelength range for comparison

Thank you for your attention!

